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Abstract 
Construction of concrete structures involves at least two different main materials: concrete and 
steel. Design of these structures should be based on cost rather than weight minimization. In this 
work, least cost design of singly and doubly reinforced beams is done by applying of the 
Lagrangian multipliers method (LMM) under ultimate design constraint beside other constraints. 
Cost objective functions and moment constraints are derived and implemented within the 
optimization method. The optimum solution comparisons with conventional design methods are 
performed and the result reported, showing that the LMM can be successfully applied to the 
minimum cost deign of reinforced concrete beams without need for iterative trials. Optimum design 
solution surfaces have been developed. Good and reliable results have been obtained and confirmed 
by using standard design procedures. The artificial neural networks (ANN) has been trained with 
design data obtained from optimal design formulas. After successful trials, the model predicted the 
optimum depth of the beam sections and optimum areas of steel required for the problems with 
accuracy satisfying all design constraints. 

 

  العصبية الاصطناعيةتطبيق الشـبكات : التصميم الأمثل لمقاطع العتبات الخرسانية المسلحة المسـتطيلة المفردة والمزدوجة التسليح 
.د سالم طيب يوسف إخلاص سعدي شيت صدام محمد احمد   
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  الخلاصة
وتصميم مثل هذه المنشآت يعتمد على التقليل من الكلفة أكثر من تقليل  يتم إنشاء المنشآت الخرسانية باسـتخدام مادتين مختلفتين على الأقل هما الحديد والخرسانة

إن دالة . التصميم القصوى طريقة في تصميم المقاطع الخرسانية مفردة ومزدوجة التسليح بأقل كلفة حسب متطلبات) لاكرانج(في هذه الدراسة تم تطبيق طريقة . الوزن
نتائج التحليل المثالية تمت مقارنتها مع طرق التصميم التقليدية وتمت جدولة النتائج ، التي . قها ضمن طريقة التقليل المثاليةكلفة الهدف و تقييد العزم تم اشـتقاقها وتطبي 

يم الأمثل للمقطع يمكن أن تطبق بنجاح لتصميم المقاطع الخرسانية دون الحاجة إلى محاولات تكرارية بالإضافة إلى أنه تم رسم سطح التصم) لاكرانج(تبين منها أن طريقة 
وقد تم تطبيق الشـبكات العصبية الاصطناعية مع البيانات التي تم الحصول  .موثوقة باسـتخدام الطرق القياسـية مقبولة و النتائج كانت جيدة و. الخرساني المسلح 

التصميم لتلبية جميع  في حديد التسليح اللازمة للمقطع مع دقة تنبأ النموذج بعمق مقطع العتبة ومساحة بعد النجاح في التطبيق ،. عليها من معادلات التصميم الأمثل
     .القيود

 

1. Introduction 
Structural design is an iterative process. The initial design is the first step in design process. Though 
the various aspects of structural design are controlled by many codes and regulations, the structural 
engineer has to exercise caution and use his judgment in addition to calculations in the 
interpretation of the various provisions of the code to obtain an efficient and economic design. After 
the design process, the designer makes an overall guess about the possible optimum solution 
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consistent with designer’s experience, knowledge, constraints, and requirements. The analysis of 
the structure is then carried out using initial design. Based on the results of the analysis a re-design 
of the structure is carried out if any of the constraints is not satisfied. The efficiency of the design 
process depends heavily on initial guess. A good initial design reduces the number of subsequent 
analysis–design cycles. This phase is extremely difficult to computerize as it needs human intuition. 
In recent years efforts have been made to computerize the initial design process using artificial 
neural networks as they can learn from available designs during training process. 

Optimization of building structures is a prime target for designers and has been investigated by 
many researchers in the past (Tam Ha [1], Rath et al. [2], Ceranic, and  Fryer, [3] , Jarmai et al. [4], 
Matej and Michal [5], Barros, et al. [6], Sahab et al. [7], Zou et al. [8] and Aschheim et al. [9]). 

 Optimization is highly linked to the selection of the most suitable structural system. Such a 
system would still be sized to ensure the least overall cost. In structural design, many parameters are 
incremental in their nature rendering a continuous approach almost impossible to implement in a 
practical optimization exercise. 

Artificial neural network is a new technology emerged from approximate simulation of human 
brain and has been successfully applied in many fields of engineering. Neural networks demonstrate 
powerful problem solving ability. They are based on quite simple principles but take advantage of 
their mathematical nature in terms of non-linear iteration. Neural networks with Back Propagation 
(BP) learning showed results by searching for various kinds of functions. However, the choice of 
basic parameters (Network topology, learning rate, initial weights) often already determines the 
success of the training process. However, there are no clear rules how to set these parameters. Yet 
these parameters determine the efficiency of training. Lot of research has taken place on 
applications of artificial neural networks in structural engineering. Artificial Neural Networks 
ANNs have been used in the fields of concrete structures for nearly 25 years. The main results were 
achieved in the structural design process and the structural analysis, for instance, Tang et al. [10]; 
Oreta [11], Fonseca et al. [12], D. Maity and A. Saha [13]. The ANN models built by these 
researchers basically set the structural parameters such as the material property, the boundary 
condition and the size of a structure as the input of the ANN model to predict the ability for the 
structure to resist the load. In most of these works the neural networks have been trained by using 
back propagation algorithm. In this approach the connection weights of neural networks are initially 
set to some random values. These values are then modified automatically according to the learning 
algorithm during the process of learning.  

In this work, the optimal design information has been incorporated into an artificial neural 
network (ANN) which gives optimal design, satisfying all of the criteria in one step. The 
optimization involves choosing of the design variables in such a way that the cost of the beam is the 
minimum, subject to the satisfaction of behavioural and geometrical constraints as per 
recommended method of design codes. 

 

2. Structural Optimization 
In optimization problems the aim is to minimize the weight, volume or the cost of the structure 
under certain deterministic behavioural constraints. The mathematical formulation of typical 
structural optimization problem with respect to the design variables, the objective and constraint 
functions can be expressed in standard mathematical terms as a non-linear programming problem as 
follows [14] 
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Min F(s)  
subjected to 

 hj(s) ≤ 0, j=,1 …….m 
(1) 

 si
l ≤ si  ≤ si

u, i=1……n 
where s is the vector of design variables, F(s) the objective function to be minimized, hj(s) the 
behavioural constraint, si

l and si
u are the lower and the upper bounds of typical design variable si. 

The set of design variables gives a unique definition of a particular design. The selection of 
design variables is very important in the optimization process. The designer has to decide a priori 
where to allow design changes to evaluate how these changes should take place by defining the 
location of the design variables and the moving directions. 
 

2.1 Lagrange Multipliers Method 
In its original formulation, the LMM applies to the optimization of a multivariate objective function 
expressed as 

 ),,....,,( 21 nxxxfy =  (2) 

subjected to the equality constraints of the form 

 mixxxg ni ...,,2,1,0),....,( 21 ==  (3) 

where n is the number of independent variables and m are the number of constraints; m must be less 
than n by definition of the problem. The procedure is to construct the unconstrained Lagrangian 
function L of the form 

,),......,(),.....,(),.....,,,,....,,( 2,1

1

212121 ni

m

i

inmn xxxgxxxfxxxL ∑
=

+== λλλλ  (4) 

where the unspecified constraints iλ  are the Lagrange multipliers determined in the course of the 

extremization. The necessary conditions for L  to possess an extreme (stationary point) are  
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Expression (6) simply restates the original constraints acting on the solution space of the 

objective function ),....,,( 21 nxxxfy = . Expressions (5) and (6) are a system of n + m  equalities with 

n + m  unknowns. Hence, their solution will yield stationary values for nxxx ,...., 21 and mλλλ ,.....,, 21  

from which the optimum solution can be obtained. 
  

3. Singly Reinforced Beam Section (SRB) 
3.1 Problem Formulation 
Figure (1) shows a typical single reinforced rectangular section with simplified rectangular stress 
block. The following factors are defined and are assumed fixed for a given problem: 

 
d

d
t s=  (7) 

In Eq.(7), t (which is the geometrical property) is a function of the effective depth, d , to be 
determined. Therefore, this factor is variable. Since the range of values of t is generally limited and 
its influence on total cost of the beam section is small, it is satisfactory to assume t to be constant. 
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Fig. 1. Singly reinforced rectangular beam 

When a rectangular-beam section is designed, the nominal bending moment, nM , with cross 

section width b, and material properties cf ′  and yf  are generally given. Thus, d and sA are to be 

determined. In this formulation however, R, and ρ in Eqs.(8 and 9), which follows, are used as 

design variables of the optimum design problem instead of d and sA , 

 
b

M
Rd n=  (8) 

 dbAs .ρ=  (9) 

where R is a coefficient used to determine effective depth which is calculate from optimum solution 
later. A cost function is defined as the total cost (C) which is equal to costs of flexural 
reinforcement plus concrete. These costs involve material costs and fabrication costs, respectively. 

Let sC and cC refer to the unit costs of steel and concrete for a unit volume. The cost of the beam of 

unit length is: 

 ccss VCVCC .. +=  (10) 

where sV  and cV  are volumes of steel and concrete per unit length of beam, respectively. Eq.(10) 

can be written as: 

 dbAV ss .1 ρ=×=  (11) 

 ( )[ ] ( )[ ]dbtbddV sc .11 +=+×=  (12) 

Substituting Eqs.(11 and 12) in Eq.(10) yields: 

 ( )[ ] bMCRtqC nc ..1++= ρ  (13) 

in which ( cs CCq /= ) is a ratio of the unit cost of steel to that of concrete. As ( bMC nc . ) in 

Eq.(13) is constant for a given problem, then minimizing the cost function (C) is equivalent to 
minimizing 

 ( )[ ] Rtqw R ++= 1),( ρρ  (14) 

The constrain function: 
Geometry of the rectangular beam is shown in Fig.(1) together with the simplified rectangular stress 
block as given in the ACI-Code [15]: 

 ⎟
⎠
⎞

⎜
⎝
⎛ −=

2

a
dfAM ysn  (15) 

in which: 

b 

d 

ds 

c 
ca 1β=

 

uε
 

sε
 

cf ′85.0
 

ys fAT =

 

(a) (b) (c) 
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bcf

fA
a ys

.85.0 ′
=  (16) 

 nu MM φ=  (17) 

 uρρρ ≤≤1  (18) 

 
yy f

cf
or

f

′
=

25.04.1
1ρ  (19) 

 
tu

u

y

c
u f

f

εε
εβρ
+

′
= ..85.0 1  (20) 

The factor 1β  in Eq.(20) shall be taken as 0.85 for concrete strength cf ′  up to and including 28 

MPa. For strengths above 28 MPa, 1β  shall be reduced continuously at a rate of 0.05 for each 6.9 

MPa of strength in excess of 28 MPa, but 1β  shall not be taken less than 0.65.  

To ensure under reinforced behavior, ACI Code; sec.10.3.5 establishes a minimum net tensile 

strain tε of 0.004 at the nominal member strength for members subjected to axial loads less than

gc Af ′1.0 , where gA  is the gross area of the cross section. 

The ACI Code further encourages the use of lower reinforcement ratios by allowing higher 
strength reduction factors in such beams. The Code defines a tension-controlled member as one 
with a net tensile strain greater than or equal to 0.005. The corresponding strength reduction factor 
is 9.0=φ . The Code additionally defines a compression-controlled member as having a net tensile 

strain of less than SEfy / . The strength reduction factorφ for compression-controlled members is 

0.65. A value of St Efy /=ε  is a yield strain for steel. Between net tensile strains of SEfy /  and 

0.005, the strength reduction factor varies linearly, and the ACI Code allows a linear interpolation 

of φ  based on tε , as shown in Fig.(2). Calculation of the nominal moment capacity frequently 

involves determination of the depth of the equivalent rectangular stress block a. Since 1/ βac = , it 

is some times more convenient to compute c/d ratios than the net tensile strain.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Variation of strength reduction factor φ with net tensile strain εt [16]. 
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Fig. 3. The net tensile strain εt and c/d ratios for singly reinforced concrete beam [16]. 
 

The assumption that plane sections remain plane ensures a direct correlation between net tensile 
strain and the c/d ratio, as shown in Fig.(3). In accordance with the safety provisions of the ACI 

Code, the net tensile strain is checked, and if 005.0≥tε , this nominal capacity is reduced by the 

factor 9.0=φ  to obtain the design strength. For tε  between SEfy /  and 0.005, φ  must be adjusted, 

as discussed earlier. 
Substituting Eqs.(7, 8, 9, and 16) into Eq.(15), obtain: 

 ),(01
7.1

1 2 RgR
f

f
f

c

y
y ρ

ρ
ρ ==−⎟⎟

⎠

⎞
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⎝

⎛
′

−  (21) 

Thus, the optimum design problem is to minimize ( )[ ] Rtqw R ++= 1),( ρρ  subjected to the 

constraints: 

 uρρρ ≤≤1    and   01
7.1

1 2 =−⎟⎟
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− R
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y
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ρ
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3.2 Optimization and Procedure of Calculations 
The LMM (Lagrangian Multipliers method) applies to the optimization of a multivariate objective 
function expressed as[14]: 

 [ ]),(),,( ),( RgwRL R ρλλρ ρ −=  (23) 

 ( )[ ]
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f

f
fRtqRL

c

y
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ρ
ρλρλρ  (24) 

where the unspecified parameter λ  is the Lagrangian Multipliers. Three independent variables 
λρ and, R  appear in the cost objective function, Eq.(23). Derivatives with respect to the three 

independent variables; produce three equations as given below: 

 0
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By eliminating λ  from Eq.(25) and Eq.(26), m
optρ  is obtained as: 

 ⎟⎟
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and using Eq.(27) , m
optR  is obtained as: 
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Taking Eq.(19) and Eq.(20) into consideration, the optimum steel ratio optρ , and optimum 

coefficient optR , are given as: 
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Values of uR and 1R  are found as follows: 

 )
7.1

1(1 1
1 cf

f
fR y
yu ′

−=
ρ

ρ      ;   )
7.1

1(11 cf

f
fR yu
yu ′

−=
ρ

ρ  (31) 

By referring to Eqs.(8 and 9) the optimum effective depth, optd , and the optimum area of steel 

optAs , are: 

 optoptopt
u

optopt dbAs
b

M
Rd ..;

)/( ρφ
==  (32) 

 

4. Doubly Reinforced Beam Section (DRB) 
4.1 Problem Formulation 
Based on the similarity with the total cost function per unit length for the doubly reinforced 
rectangular section shown in Fig.(4) may be written as Eq.(13) as: 

 ( )[ ] bMCRtqC ncdoubly .)1( ++′+= ρρ  (33) 

The ACI Code limits the net tensile strain, not the reinforcement ratio. To provide the same 
margin against brittle failure as for singly reinforced beams, the area of reinforcement should be 
limited  
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Fig. 4. Bending stress and strain distribution in cross-section of doubly reinforced rectangular beam. 
 
To; .)(maxAssAAsdoubly =′−  as shown in Fig.(4.f). It is easily shown that the reinforcement ratio 

doublyρ  for a doubly reinforced beam is [16]:  

 ρρρ ′+= udoubly  (34) 

where uρ  is the maximum reinforcement ratio allowed by the ACI Code for singly reinforcement 

beams and given by Eq.(20).  

As uρ  establishes location of the neutral axis, the limitation of Eq.(34) will provide acceptable 

net tensile strains. A check of tε  is required to determine the strength reduction factor φ  and verify 

that the net tensile strain requirements are satisfied. In the case of 005.0≥tε , uρ may be replaced 

by ρ  in Eq.(34) which gives 9.0=φ .   

Substituting Eq.(34) into Eq.(33), produces the following cost function, C: 

 ( )[ ] bMCRtqC ncu .1)2( ++′+= ρρ  (35) 

Since the product bMC nc .  in Eq.(35) is constant for a given problem, minimization of the 

cost function C is equivalent to minimizing 

 ( )[ ] Rtqw uR ++′+=′ 1)2(),( ρρρ  (36) 

The constraint function: 
Fig.(4), shows the geometry and the simplified rectangular stress block for the cross- section of 

rectangular of rectangular doubly reinforced beam. When the ultimate design moment uM  exceeds 

the moment of resistance of a singly reinforced section ( 2dbkn ), compression reinforcement is 

required, Considering equilibrium of the horizontal forces on the beam cross- section for this case, 

depth of the rectangular compression block  a is equal to (
bcf

fsAAs ydoubly

′

′−

85.0

)(
). Using Eq.(34) ; the 

block depth will then be equal to: 

 d
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f
a yu .

85.0 ′
=

ρ
 (37) 

The ACI-Code [15] specifies requirements for nM  and ρ  for a doubly reinforced concrete beam 

section (taking moments about the tension reinforcement) as [16]: 
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and:  

 maxρρρ ′≤≤′ doublycy  (39) 

where cyρ′  gives minimum tensile reinforcement ratio that will ensure yielding of the compression 

steel at failure [16]: 

 ρ
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Substituting Eqs.(7),( 8),( 9),( 34) and Eq.(37) into Eq.(38), yields: 
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Thus, the optimum design problem is to minimize Eq.(36) which is subjected to the constraints: 
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1
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4.2 Optimization and Procedure of Calculations 
By excluding Eq.(39), the constraint on the problem is given by Eq.(42). Then using the LMM, 
technique [14], Eq.(43) can be solved leading to a set of design variables. Accordingly a Lagrangian 
function L, is defined as: 
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in which tQ +=1 . 

Setting 0,0,0 =∂∂=∂∂=′∂∂ λρ LRLL , yields 

 ( )[ ] 012 =−− Rtq λ  (45) 
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By eliminating λ  from Eq.(45) and Eq.(46), optopt R,ρ′ , are obtained as: 
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The optimum effective depth optd for (DRB), the optimum area of steel in tension optAs , and the 

compression steel area optsA′ are obtained as: 

 
b

M
Rd n

optopt
)/( φ

=  (50 a) 

 optoptuopt dbAs .).( ρρ ′+=  (50 b) 
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 optoptopt dbsA .ρ′=′  (50 c) 

The procedure to find the optimum solution (i.e. optoptopt sAAsd ′,, ) is summarized in numerical 

design examples. 
 

5. Numerical Examples 
Three typical design examples are given, illustrating situations where the optimum solution is either 
a singly or doubly reinforced section. For given values of cfftq y ′,,, , the optimum solution is 

obtained and presented graphically. The optimum solution is compared with the standard design 
procedure specified in ACI-Code [15]. 
 

5.1 Design Example 1: Singly Reinforced Beam (SRB) 
A rectangular beam section with b=300 mm is given. It is required to determine values of the 
optimum area of steel optAs and the optimum effective depth optd , for uM =667 kN.m, cf ′ =28 

MPa and yf =414 MPa. It is assumed that t=0.1, and q=85. 

Figure (5), shows the optimum solution for singly reinforced concrete beam section (SRB). 
Hence, from Eq.(28) optρ  is 0.010563270 giving the corresponding optimum coefficient of the 

effective depth of the section optR  obtained from Eq.(29) as 0.5017965. The optimum area of the 

tension reinforcement optAs and optimum effective depth of the section optd  are then obtained from 

Eq.(32) as 2499 mm2 and 788.7 mm respectively. 
On the bases of the depth wise strain variation shown in Fig. (3), value of the net tensile strain is 

tε  01088.0 005.0> , so the strength reduction factor is 9.0=φ . The corresponding total material 

cost C of the beam per unit length is then obtained from Eq.(13) to be  0. 4727144 cC  $/m as its 
minimum value (in terms of the concrete cost per unit volume). Figure (5) shows also that the 
optimum solution lies on the bending moment constraint boundary with the cost objective function 
being tangential to the curve. Table 1 shows the results using the standard design method. It is 
marked from this table that the derived optimum design formulae for singly reinforced sections 
gives an accurate estimate of the minimum material cost. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Optimum design for the singly reinforced concrete beam of Example 1. 
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Table 1. Results of the standard design method and LMM for the singly reinforced beam of Example 1. 

*minimum value of the effective depth which is calculated from the minimum coefficient R1 using 
Eq.(31). 

**maximum reinforcement ratio, given by Eq.(20). 
 

5.2 Design Example 2: Doubly Reinforced Beam (DRB) 
A-rectangular reinforced concrete beam section with b=250 mm, MPacf 20=′  and MPafy 400= ; 

is given. It is required to determine values of the optimum effective depth optd and optimum area of 

steel optAs in which uM =497 kN.m. Assume values of t and q as 0.1 and 20, respectively. 

The optimum result is presented graphically on the design surface ( R,ρ ) of Fig.(6). Using 

Eq.(48), value of optρ′  is obtained to be 0.008967 giving a corresponding  value for

0.022514 saoptρ . Value of  optR  is obtained from Eq.(49) as 0.3584414. value of the optimum 

area of the tension reinforcement optAs  is calculated from Eq.(50-b) to be 2998.456 mm2, while 

value of optsA′  is obtained by applying Eq.(50-c) as 1194.258 mm2 after computing value of the 

optimum effective depth of the section optd   from Eq.(50-a) as 532.73 mm. 

According to the strain variation in the depth wise direction shown in fig.(3), value of the net 

tensile strain tε  is 0064.0 005.0> , so the strength reduction factorφ  value is 0.9, then the total 

material cost C of the beam per unit length is obtained from Eq.(35) to be 0.230354 mCc /$  at its 

minimum value. The optimum solution lies on the tangent point of doubly reinforced bending 
constraint moment with the objective function being tangential to the curve. 

Table 2 shows the results of the standard design method including values of the effective depth, 
area and ratio of the tension reinforcement and the total cost of the beam per unit length in terms of 

concrete cost cC  per unit volume. The row of the optimum is the shaded one. 

 
 
 
 
 
 
 

 

Effective depth 
(d) mm 

Area of tension 
Reinforcement  

(As) mm2 

Tension 
Reinforcement ratio  

( ρ ) 

Total material costs 
(in terms of Cc) 

($/m) 

622.4* 3421 0.018324276** 0.4962165 
660 3147.4710 0.015896318 0.4853351 
700 2907.4170         0.013844842 0.4781304 
740 2705.9530 0.012188977 0.4742060 

788.7 2499 0.010563270 0. 4727144 
780 2533.6260 0.010827461 0.4727582 
820 2384.0240 0.009691154 0.4732420 
860 2252.596 0.008730992 0.4752706 
900 2135.997 0.007911100 0.4785597 
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Fig. 6. Optimum design for the doubly reinforced concrete beam of Example 2. 
 
Table 2. Results of the standard design method and LMM for the doubly reinforced beam of 

Example 2. 

Effective 
depth 
(d)mm 

Area of 
tension 

Reinforcem
ent  (As) 

mm2 

Tension 
Reinforceme

nt ratio       
( doublyρ ) 

Area of 
compression 
Reinforceme
nt  (A´s) mm2 

compression 
Reinforcement 

ratio ( ρ′ ) 

Total material costs 
(in terms of Cc) 

($/m) 

400 3924 0.03924 2570 0.025696 0.2398762 
440 3585 0.03259 2094 0.019040 0.2345793 
470 3369 0.02867 1777 0.015123 0.2321643 
500 3180 0.02544 1486 0.011890 0.227814 
520 3066 0.02358 1305 0.010038 0.227298 

532.73 2998.456 0.022514 1194.258 0.008967 0.230354 
540 2961 0.02193 1132 0.008389 0.2303755 
560 2864 0.02045 968 0.006913 0.2306415 
590 2732 0.01852 734 0.004973 0.2315563 
620 2613 0.01686 513 0.003309 0.2330103 
640 2540 0.01588 372 0.002327 0.2342417 
660 2472 0.01498 236 0.001433 0.2356606 

 

5.3 Design example 3: (SRB-DRB) 
Given quantities are the same as those of Example No.2, except that q=30, The results are as 
follows: 

u
m
opt ρρ >= 01968.0 ;hence 0.0135469== uopt ρρ ,depth= 1d =696.364 mm, optAs =2358.389 mm2. 
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In this example, the optimum section agrees with the section using uρ as the steel ratio. The 

corresponding value of the total material cost C of the beam per unit length is then obtained from 
Eq.(13) to be 0.2622517 mCc /$  at its minimum limit (in terms of concrete cost per unit volume). 

Fig.(7) shows the optimum result is presented graphically on the 2D-design surface ( R,ρ ). The 

design space is discontinuous with the feasible region consisting of a singly (SRB) and doubly 
(DRB) reinforced solution space. The comparison between the standard design method and the 
optimum solution is also summarized in Table 3.  The optimum solution lies on the bending 
moment constraint boundary at the point of intersection with the boundary reinforcement, as shown 
in Fig.(7). As in the previous example the cost objective function is tangential to the bending 
moment constraint surface. 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 

Fig. 7. Optimum design for the SRB-DRB reinforced concrete beam of Example 3. 
 
Table 3. Results of the standard design method and LMM for the SRB-DRB reinforced beam of 

Example 3. 

 

Effective 
depth 
(d)mm 

Area of tension 
Reinforcement  

(As) mm2 

Tension 
Reinforcement 

ratio ( ρ ) 

Area of 
compression 

Reinforcement  
(A´s) mm2 

compression 
Reinforcement 

ratio ( ρ′ ) 

Total material 
costs (in terms 
of  Cc) ($/m) 

500 3180 0.0254400 1486 0.0118900 0.2774762 
540 2961 0.0219333 1132 0.0083887 0.2713132 
570 2818 0.1977544 888 0.0062320 0.2679469 
600 2691 0.0179400 659 0.0043907 0.2654776 
635 2558 0.0161134 407 0.0025637 0.2635609 

696.364 2358.389 0.0135469 - - 0.2622517 
750 2124 0.0113266 - - 0.2699621 
780 2015 0.0103327 - - 0.2749462 
800 1949 0.0097459 - - 0.2784755 
820 1888 0.0092108 - - 0.2821465 
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6. Neural Network Approach 
6.1 Neural Network Design and Training 
The developed database for the optimum design of rectangular sections, which is based on the 
equations in articles 3 and 4, were used to train a neural network. The design input to the problem 
includes: applied moment, Mu, concrete strength fc, yield strength of steel reinforcement fy, sections 
width b, and unit cost of steel to that of concrete q. The design output includes: optimum area of 
reinforcement Asopt, and optimum effective depth of section dopt. 

A set of 21691 and 12555 optimum design examples were generated for training and a set of 
1491 and 213 unseen examples were used for testing of trained ANN for singly and doubly 
reinforced sections, respectively. Three layered feed forward neural networks (FFNN) consisting of 
one hidden layer has been simulated using MATLAB  developed by [17] for learning of the optimal 
design examples .The range of input and output data are shown in Table 4. 

 
Table 4. Range of input and output parameters in database for the optimum designs SRB-DRB 

 Singly reinforcement Doubly reinforcement 
Input parameter Minimum Maximum Minimum Maximum 

Width (mm) b 200 400 200 400 
Compressive strength (MPa) fc 20 40 20 40 
yield strength (MPa) fy 300 520 300  520 
cost of steel/concrete 15 95 10 35 
Ultimate moment(kN-m) 100 2000 150 1675 
Area of steel (mm2) As 648 10613 947.7 4499.3 
Depth (mm) d 301 1100 301.2 961.4 
Area of positive steel(mm2)   100.2 2189.7 

 
The multi-layer feed forward back-propagation technique [18] is implemented to develop and 

train the neural network of current study where the sigmoid transform function is adopted. The term 
“ANN prediction” is reserved for ANN response for cases that were not used in the pre-training 
stages. This is used in order to examine the ANN’s ability to associate and generalize a true 
physical response that has not been previously “seen.” A good prediction for these cases is the 
ultimate verification test for the ANN models. These tests have to be applied for (input and output) 
response within the domain of training. It should be expected that ANN would produce poor results 
for data that are outside the training domain. 

Preprocessing of data by scaling was carried out to improve the training of the neural network. 
To avoid the slow rate of learning near the end points specifically of the output range due to the 
property of the sigmoid function, the input and output data were scaled between the interval 0.1 and 
0.9. The scaling of the training data sets was carried out using the following equation: 

   )/8.09.0()/8.0( max Δ−+Δ= xxy  (51) 

where minmax xx −=Δ  

It should be noted that any new input data should be scaled before being presented to the 
network and the corresponding predicted values should be un-scaled before use. The back-
propagation learning algorithm was employed for learning in the MATLAB program [17]. Each 
training “epoch” of the network consisted of one pass over the entire all training data sets. The 
testing data sets were used to monitor the training progress. 

Different training functions available in MATLAB were experimented for the current 
application. The Levenberg-Marquardt (LM) techniques built in MATLAB proved to be efficient 
training functions, and therefore, are used to construct the NN model. These training functions are 
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among the conjugate gradient algorithms that start training by searching in the steepest descent 
direction (negative of the gradient) on the first iteration. 

The LM algorithm is known to be significantly faster than the more traditional gradient descent 
type algorithms for training neural networks. It is, in fact, mentioned as the fastest method for 
training moderately sized feed-forward neural network [19]. While each iteration of the LM 
algorithm tends to take longer than each iteration of the gradient descent algorithm used previously, 
the LM algorithm yields far better results using far fewer iterations, leading to a net saving in 
computer processor time over the previous method. One concern, however, is that it may overfit the 
data. The network should be trained to recognize general characteristics rather than variations 
specific to the data set used for training. 

The network architecture or topology is obtained by identifying the number of hidden layers 
and the number of neurons in each hidden layer. There is no specific rule to determine the number 
of hidden layers or the number of neurons in each hidden layer. The network learns by comparing 
its output for each pattern with a target output for that pattern, then calculating the error and 
propagating an error function backward through the neural network. To use the trained neural 
network, new values for the input parameters are presented to the network. The network then 
calculates the neuron outputs using the existing weight values developed in the training process. 
Table 5 shows the properties (architectures and parameters) of ANN models. 
 
Table 5. Properties of ANN models 
 Singly reinforcement model   Doubly reinforcement model 

Architecture 5-12-2  5-15-3 
training function LM LM 
Activation Function Log sigmoid  Log sigmoid 
Mean Squared Error (MSE) 0.0005 0.0005 

 

6.3 Results and Discussion 
The performance of a trained network can be measured to some extent by the errors on the test sets, 
but it is often useful to investigate the network response in more detail. One option is to perform a 
regression analysis between the network response and the corresponding targets and finding a 
correlation coefficient. It is a measure of how well the variation in output is explained by the 
targets. If this number is equal to 1, then there is perfect correlation between targets and outputs. 

The regression analysis between the ANN predicted and corresponding calculated optimum 
values for depth and steel area are shown in Figs. (8) to (12), the correlation coefficients were  
found to be 0.98769 and 0.99578 for the depth of singly and doubly reinforced section, respectively, 
while  the correlation coefficients for tension steel area were 0.99416 and 0.99438 for singly and 
doubly reinforced sections, respectively. On the other hand the correlation coefficient for 
compression steel area of doubly reinforced sections was 0.99026. 
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It is clear that neural network provides an efficient alternative method in the design of singly and 
doubly reinforced concrete beam sections. 

The neural network approach was adopted in an attempt to overcome significant limitations with 
traditional methods. Compared to similar works using the ACI method, the neural network 
approach does not require any equations; all the user has to do is input a few parameters describing 
the specific problem to be solved. In addition, a neural network can solve simultaneously a batch of 
problems in almost negligible time. 

The success of the ANN model in predicting the design parameters highlights that such a 
numerical technique can be used reliably to design problems for structural elements. 
 

7. Conclusions 
In this work, the optimum design of SRB and DRB was done by taking moment-equilibrium 
besides other constrains. To evaluate the cost of the beam, a ratio of steel to concrete costs is 
necessary. Two design variables ρ and R, and other factors are used, and the optimum design 

problem can be solved easily using LMM without need for iterative trials. The artificial neural 
networks (ANN) has been trained with design data obtained from optimal design formulas. After 
successful learning, the model predicted the depth of the beam section and area of steel required for 
problems. 

The research reported in this paper shows the following conclusions: 

 The optimum steel ratio optρ , is usually less than uρ and considerably greater than 1ρ . 

 The optimum section is very economical as compared to other sections which can be obtained 
from standard design method. 

 The procedure developed can serve as the basis for designing reinforced concrete beams, while 
a structure using the optimum section will not provide an optimum design for the entire 
structure. 

 The problem has been limited about the singly reinforced beam section, if q and cf ′ are 

relatively small and yf is large, it appears possible that the doubly reinforced section could be 

the optimum section. 
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 The feasibility of using the artificial neural networks in building the model for optimum design 
of SRB and DRB, has been verified, the artificial neural network model predicted the optimum 
depth of the beam sections and optimum areas of steel required for the problems with accuracy 
satisfying all design constraints. 
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Notation 
 

The following symbols are using in this paper 
 
 

a  depth of the compression stress block R Correlation coefficient 

SA Area of tensile steel reinforcement 1R coefficient for uρ  

soptA optimum tension steel area uR coefficient for 1ρ  

SA′  Area of compression steel reinforcement                 
m
opt
R  optimum coefficient without steel limit constraint  

optsA′ optimum compression steel area t  dimensionless geometrical properties of rectangular beam 
section (see Eq. 7) 

b width of beam Sc VV ,  volumes of concrete and steel of beam of unit length 

c Distance from top fiber to natural axes w  objective function  

C cost of unit length of beam, i.e., cost of section 1β  equivalent stress factor 

sc CC ,
  

costs of concrete and steel per unit volume 
,respectively  

λ  Lagrange multiplier 

d effective depth (to tension reinforcement) ρ dbAs / 

optd  optimum effective depth 1ρ minimum reinforcement ratio  

sd distance from steel centroid to tensile face cyρ′  minimum tensile reinforcement ratio that will ensure yielding of 
the compression steel at failure 

cf ′  strength of concrete  doublyρ
 

tension reinforcement ratio for doubly reinforced section 

yf  yield strength of steel maxρ′  maximum tension reinforcement ratio for doubly reinforced 
section 

g constrains function optρ  optimum tension reinforcement ratio 

kn  Flexural resistance factor = )59.01(
c

y
y f

f
f

′
−

ρ
ρ  

m
optρ  optimum tension reinforcement ratio without steel limit 

constraints 

optρ′  optimum compression reinforcement ratio 

L Lagrange function ρ′  dbsA /′  

nM nominal bending moment uρ  maximum tension reinforcement ratio 

uM  ultimate bending moment φ strength reduction factor see Fig.(2) 

q ratio of cost of steel to that of concrete tε net tensile strain of steel  

Q (1+t) yε yield  strain of steel ( yy Ef / ) 

R coefficient of bMn /  uε ultimate strain of concrete  
 

  

 
Abbreviations: 

 

ANN:  Artificial Neural Network    
FFNN: Feed Forward Neural Networks 
SRB: Singly Reinforced Beam  
DRB: Doubly Reinforced Beam 
LMM: Lagrange Multiplier Method 


