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Abstract

In this study, a theoretical analysis is presented to estimate the in-plane large
displacement elastic stability behavior of structures having non-prismatic members of
linearly and nonlinearly varying sections resting on elastic foundation (Winkler type) and
subjected to static loads applied at joints only. The analysis adopts the beam-column
approach and models the structural members as beam-column elements resting on
distributed springs. The formulation of beam-column element is based on Euler approach
allowing for the influence of the axial force on bending stiffness. Changes in member
chord length due to axial deformation and flexural bowing are taken into account. The
stability and bowing functions are estimated using methods of finite differences and
finite segments. Also, approximate results have been obtained by using approximate
stability and bowing functions of linearly and nonlinearly tapered members resting on
elastic foundation. A computer program has been coded in QB language to carry out the
proposed analysis of structures with prismatic or non-prismatic members of linearly and
nonlinearly varying sections resting on elastic foundation. As a result of this study; the
only difference between the analysis of non-prismatic members resting on elastic

foundation and those which are not, when adopting the beam-column approach, is
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represented in the stability and bowing functions, and this is reflected directly on the

tangent stiffness matrix.
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1. Introduction

1.1 Elastic Foundation
Many problems related to the structural engineering can be modeled by means of a

beam or a beam-column on elastic foundation. Examples of these are railway tracks,

footings and adjacent structural elements such as various types of stiffeners. The simple
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common model to describe the elastic foundation is the Winkler model, which consists of

infinitely number of linear springs defined by the foundation modulus (k).

1.2 Geometric Nonlinearity
It’s meant that the structures can be analyzed for large displacements and elastic

material properties. The effect of geometric nonlinearity may be divided into three
categories: -

1. Change of member lateral stiffness (i.e. stability problem);

2. Change in member length due to bowing;

3. Large displacement problem.

1.2.1 Stability and Bowing Problems
For the beam-column supported on elastic foundation (Winkler model) of constant

soil stiffness, the modified stability functions for a prismatic beam-column were derived
by Al-Sarraf as [1]:

El
M;= — (S0,+SC0,+Qy;/L-qQy,/L) (1-1)
L
El
M, = — (SC 0, +S 0,+qQ y; /L - Q y, /L) .(1-2)
L
El
V]_:_(Q 61+qQ 62 +Ty1/L'tTy2/L) (1'3)
L
El
Vy = —(@Q0,+ Q0 +tTy, /L-Ty,/L) (1-4)
L

Where

M, and M, are end moments at ends 1 and 2 respectively
V. and V, are end forces at ends 1 and 2 respectively

S is the stiffness factor

SC moment carry-over factor

Q sway moment factor
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qQ sway moment carry-over factor
T shear factor
tT shear carry -over factor

S, SC, Q, qQ, T, and tT are functions of the non-dimensional parameter:

/4
K
A= | — |L ...(1-5)
4E|

and axial load parameter (p = P/PE). Where k in Eq.(1-5) is the stiffness of the elastic
foundation,which is equal to the modulus of subgrade reaction multiplied by the width of
the beam-column.The relation between the axial deformation u and the axial force P can

be expressed according to Oran [3]:
EA

P= (U-CbL) (1'6)

Cb = by (6;+6,) + by (1- 0,)? (1-7)
is the length correction factor due to bowing action

b, and b, : bowing functions

E: Modulus of elasticity

I: Moment of inertia,

A: Cross-sectional area, and

L: Initial (undeformed) member length.

Deformed  shape
M
P : WM. p
%% 0 ’
Initial shape
u | Le=L (1+3)
e >
« L X

Fig.(1) Member forces and deformations in local coordinate
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1.2.2 Large Displacement Problem
The curvature of the beam-column element can be expressed as:

1 -(d?w/dx?)

®= ..(1-8)

R [1+ (dwidx)?] ™
In small deformation theory, the term (dw/dx) has small values; therefore, the square
of the term will be very small compared with one. Thus (dw/dx) is neglected. In large
deformations, the slope (dw/dx) has a considerable effect on the curvature value and it
cannot be neglected. If the term (dw/dx) in Eq.(1-8) is considered in the analysis, the
analysis becomes so complicated that it can be solved only by using elliptical integrals.
The complicated problem is then solved by considering relative small deformation in the
member with large joint displacements, so, the small deformation theory is still
applicable to the relative member deformations and the problem produced by assuming
large joint displacement may then be solved by satisfying the equilibrium condition in

the last (updated) configuration of the structure.

2. Non — Prismatic Beam-Column Resting on Elastic Foundation
The basic differential equation for a non-prismatic beam-column on elastic

foundation is[9]:

d? d%y d?y
El(x) +P +ky:O (2'1)
dx? dx? dx?

Where y represents lateral deflection at distance x along the member, El ( is the flexural
stiffness of the member, P is axial force, and k represents the stiffness of the foundation.
For non-prismatic member, the following representation can be considered as shown in
Fig.(2) [2]. All the members considered have uniform taper in either one or two
directions. Therefore, the depth d, may be expressed by:

dy =d, (x/a) ...(2-2)
The moment of inertia of the cross-sectional area of the member about the axis of

buckling may be expressed in the form
[ x) = |2 (X/a) m (2'3)
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Where |, is the moment of inertia at distance x from the origin O, and m is the shape
factor that depends on the cross-sectional shape and dimensions of the member. The
shape factor m may be evaluated by observing that Eq.(2-3) must gives 1y =1, when X
= b. This condition yields the relation:
m=log (I,/1,) / log U ...(2-4)

Where U is (d,/d,) end depth ratio. The value of shape factor m can be determined only
when the dimensions of the cross-sections are known [4]. In the next item, stability and
bowing functions will be determined from the solving of Eq.(2-1) by two methods of
solution; finite difference and finite

segments.

A
>
\

A\ 4

d

Fig.(2) Non-Prismatic Beam Coulmn

3. Stability and Bowing Problems
3.1 Modified Stability Functions
3.1.1 Estimation of Modified Stability Functions Using Finite Differences Method:
In this method, the differential equation is replaced by a set of equivalent algebraic

equations that are usually easier to solve than the differential equation. This method is
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used to estimate the modified stability functions by solving the differential equation of
the non-prismatic beam-column on elastic foundation (i.e. Eq.(2-1)). Ghali [5] presented
the following formulation using the finite differences method for a beam resting on
elastic foundation of variable section. The bending moment M and the deflection y are
related by the differential equation:

d?y
Elwy ——=-M ...(3-1)

dx?
by using central differences, the second derivative of lateral deflection is:

d?y 1

5 = T(yi-l — 2Yi * Yis1) ...(3-2)
dx h
where h=L/N
in which:

I number of the required node

h interval between two successive nodes
L length of the member

N number of segments

By substituting the values of Eq.(3-2) into Eq.(3-1), the following is obtained
El,

M; = h2— (Vi — 2Yi + Yin1) .(3-3)

Here Mi is the moment at specified node i, and
l; is the moment of inertia at specified nod i

Double differentiation of Eq.(3-1) yields:

d? d?y d*™m
El(x) =- (3'4)

dx? dx? dx?

Then, the second derivative of the moment can be put in finite difference form,

d? d%y 1
El(x) = - (Mi_l—ZMi + Mi+1) (3'5)
dx? dx? h?
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from EQ.(3-3),the right terms in Eq.(3-5) can be written as:

Eliq
Mi.1= (Yiz — 2Yi1 + i)
h2
2El,
2M; = h—z (Yi-s — 2Yi + Yis1) ...(3-6)
EIi+l

Miz1= —— (Vi — 2Vis1 T Yis2)
h2

Substituting the above equations into Eq.(3-6), then sub Egs.(3-6) and (3-2) into Eq.(2-
1), yields the following:

-E
—4[|i-1 (Yiz = 2¥ir + Y1) = 20 (Yier — 2Yi + Vier) + list (Vi — 2Yia + yi+2)]
h
P
+ 2 (Yie—2Yi *+VYis) +KY; =0 ...(3-7)

after re-arranging of Eq.(3-7),it becomes

Ph? 2Ph? kh*
li.1Yio + -2 (la+ )| Yia +{(lia—4 1 + i) + Yi
E E E

Ph?
+ =2 (hisa + 1) | Visr + L2 Yis2 =0 ...(3-8)
E
But h=L/N;
p=P/Pe=PL?*/El, ...(3-9)

and AL = (kM4EDY L
Where 1, is the moment of inertia at node 0, (see Fig.(3)), Then, if the relations in Eq.(3-9)

are substituted:

li1Yio tAYi1+BYi+Cyi+ s Yieo =0 ...(3-10)
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Where

A=(pLa® I N =2 (lig + 1) ...(3-11)
B=lig+41i+li—2p La°/ N+ ((AL)* 1/N%) ...(3-12)
C=(plym® I ND =2 (l; + lixy) ...(3-13)

i=0 1 2 ... ...N-2 N-1N

end1 @ end 2

¥ oX h ~

Elastic /—> L M ‘ node
foundation [ g

Fig.(3) Beam-column member resting on elastic foundation

Each stability function will be derived depending on the applied boundary conditions, for

instance, the boundary conditions applied for determination of S; and SC are: - (6;= 1, 6,

:yO:yN:O)_

3.1.2 Estimation of Modified Stability Functions Using Finite Segments Method
Finite segment method may be considered as a physical interpretation of the finite

difference method that can be applied numerically to solve differential equations [7]. In
this method, the non-prismatic member on elastic foundation is divided into (n) prismatic
members, as shown in Fig.(4). The exact stability functions derived by Al-Hachami [6],
which shown in chapter three, are used to calculate the modified stability functions.

For the segment m, the local end force-deformation relationships are:

El; Yi Yi

M; = Cimei + C2m(Pj + (Cimt+ Com) —(Cim*+ Com) ... (3-14)
A N i
El; Yi Yi

M; = Com®i + Cim®j + (C1m+ Cop) —(Cint Com) —— ... (3-15)
hm m hm
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El; Yi Yj
Vi= (Cim+ Com )i +(Cim+ Con )0 + An —An

hin” m hm

El; Yi Yi
V= —(Cim* Com)oi— (Cim+ Com)oj — Ay —An

hin? him hm

Equations (3-14) to (3-17) can be written in matrix form as:

{f}m = [Kln {V}n

FEBRUARY-2007

...(316)

...(3-17)

...(3-18)

/
................... //
—1 2 m N
S S
h |hy
> elastic foundation

Fig.(4) Member segments of non-prismatic beam-column on elastic
Foundation

fViL\
_ | M
{f}m - VJL g

M;

rYi /L |
0i
{V}m = Y /L ¢

Oj

- J

and the stiffness matrix [K], can be written as:

80
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Am (Clm + C2m) Am (Clm + C2m)
1:rm3 1:rmz 1:rm3 1:rmz
Clm (Clm + CZm) c:2m
Eln,
[K]m = 1:rm 1:rmz 1:rm
L An (Cim+Com) | . (3-20)
frm3 frm2
Clm
1:rm
In which:
An =2(Cym + Cop) — n Om ...(3-22)
Om = Qe -frm2 (3'23)

Where q,, is the segment m axial force parameter, while g is the total element axial force
parameter
frn: hm/L ...(3'24)

Cuim, and C,,,: stability functions of a prismatic segment, which are functions of q,.

y; and y; : are sways of end i and j of segment m.

@i and ¢; : are angles of rotations of end i and j of sement m.

hn, : is the length of segment m.

I, : is the moment of inertia for segment m.

For the case of beam-column resting on elastic foundation (Winkler model), where the
soil subgrade reaction is assumed to be uniformly distributed along the beam-column, the

segment stiffness matrix [K]y, in Eq.(3-21) must be rewritten as [6]:
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J3m Jlm J4m J2m
frm3 1:rmz 1:rm3 1:rmz
C1m J2m C2m
El, -
[K]m = frm frm’ frm ..(3-25)
L J3m Jlm
frm3 1:rmz
Clm
L 1:rm —

where Cim ,Com, Jim s Jom, Jam » @nd  Jsm  denote the stability functions for a prismatic
beam-column resting on elastic foundation.

(AL)m = frm .(AL)e ...(3-26)

where (AL)n is the segment m axial force parameter, while (AL), is the total element axial
force parameter.Each stability function will be derived depending on the applied
boundary conditions.

3.2 Modified Bowing Functions

Oran [8] discovered that the modified stability functions (y1,y,, and y3) can be found by
using the stability functions (S;, SC, S,), as follows:

Sy
V1= o ...(3-27)
SC
Y2 = o ...(3-28)
Sy
Y3 = " ...(3-29)
Also, he derived the modified bowing functions for the non-prismatic members, as
follows:
_’Y ‘i
Bi= 5 ...(3-30)
21
_,Yui
B = , ...(3-31)
21
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Where f; = modified bowing function.
B'; = first derivative of bowing function.
v 'i = first derivative of stability function.
v"i = second derivative of stability functions.
v'; can be found using the finite difference method.
f(q + Ag) - f(q - Ag)

f'(q) = ...(3-32)
2AQ

f(q + Aqg) — 2f(q) + f(q - Aq)
f(q) = X ...(3-33)
(Aq)

3.3 Estimation of Modified Stability and Bowing Functions Using Approximate
Formulae

3.3.1 Estimation of Stability Functions
In order to facilitate the estimation of modified stability functions of the non-

prismatic members resting on elastic foundation, and depending on the results obtained
previously by finite differences method and finite segments method, it is noticed that the
modified stability functions for members with linear and non-linear variation of sections

can be estimated using the relations:

S, =yle-oumia g ...(3-34)
SC=ytramias gc ...(3-35)
S, =yl 0hmila’ g ...(3-36)
Q,=u°m 3 (for \L < 3) ...(3-37)
Q,=um/ 17 g (for \L >=3) ...(3-38)
Q, = yom/ (1601 (for \L =<4.5) ...(3-39)
Q, = Yem/ 193 -000h) 3 o AL >4.5) ...(3-40)
qQ; = U*™* qQ ...(3-41)
qQ,= U™+ qQ  (for AL < 3) ...(3-42)
qQ, = U*™"3% qQ (for \L >=3) ...(3-43)
T, =yem/@5-05-01 U U-DU-L9) T (for JL =< 1.5) ...(3-44)
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T, = UM/ @8-025U-19*050L-2) T (for1.5 <]L < 4) ...(3-45)

Ty = yom/(L-Dr08-020L=9) T (for )| >= 4) ...(3-46)

T,=Uem/ (98-003U-13) T (for )L =< 1.5) ...(3-47)

T,= U° m /(183 - 0183 (U - 15) - (025 - 0115 (U - 15)U - 5) (L - 2) T (for 1.5</L <4)

...(3-48)

T, = yom/GB-00L=O=010) 7 (for AL >=4) ...(3-49)

tT,=U°™ 2 4T ...(3-50)

th — U(pm(l+()»L—1)/7)/(5.3—0.9 U) 1T (3_51)

Where S, SC, Q, gQ, T, tT are the stability functions of a uniform member resting on
elastic foundation with constant moment of inertia (U®™2.1,), having axial load parameter

p=py /U™ ...(3-52)

The value of ¢ depends on the shape factor m [2]. As follows:

A- For members having linear distribution of cross section (i.e. tapered member).
Form=4 o=1

Form < 3 ¢=1.04+0.08 (3—m) ...(3-53)

B- For members having parabolic distribution of cross section, it is divided into:

1-members having concave variation of cross section [7]

Form=4 ¢ =0.825

Form <3 ¢ =0.88-0.284 (3—m) ...(3-54)
2-members having convex variation of cross section

Form=4 ¢ =1.07

Form <3 ¢ =1.09 +0.08(3 — m) ...(3-55)

3.3.2 Estimation of Bowing Functions

In connection with approximate stability function, the values of vy; are:

y, = Y@ 13NmiLar g ...(3-56)
y, = U @-33m4a3 g0 ...(3-57)
yg= U@ 4me g ...(3-58)

The derivatives of the stability functions y; with respect to the axial load parameter (p;):
,Y ']_ — U (0.2625 ¢ +0.1) m/ 1.47 .SI .“(3_59)
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vy =U (1-L1S@)m/43 g ...(3-60)
Y=y @onme g ...(3-61)
Y"l - U (1.57-0.47 ¢) m/ 1.47 gn .“(3_62)
Y"Z - U (53-33¢)m/4.3 SC" ”.(3-63)
Yy =y Glr3oma g ...(3-64)

Where S°, SC’°, S*’, and SC" can be determined approximately by using finite difference
method from Eqgs.( 3-32) and (3-33). Now, bowing function (f;) can be obtained with
respect to (py) using:

-’Y 'i
Bi = .. .(3-65)

2

Graphs of stability functions for various types of non-prismatic members are shown in
appendix A. In addition, results of bowing functions is illustrated in Tables (A-1), (A-2)
and (A-3) in appendix A, also.

4. Modified Tangent Stiffness Matrix in Local Coordinates
For convenience, the following notation is introduced [8]

U =6, ; U,=0,  Us=u (3'66)
and _ _

Sl = Ml ; Sz = M2 ; 83 =PL (3'67)
then , {AS} = [t] {AU} ...(3-68)

in which [t] = tangent stiffness matrix for relative deformation, with

8Si 88. 8p1

tij = + * ; fori,j=1,23 ...(3-69)
8UJ 8p 8UJ

p1 can be rewritten in the form:
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KZ

p1= Z—(Ur — (B101* + 2B 0,0, + B3 6,°)) ...(3-70)
T

Using a notation consistent to that of a prismatic member [3,8]

Op/o0, = Gy/n*H ;. 0pldb, = Gy/n*H ;. oploU=1/H ...(3-71)

in which ur=u/L ...(3-72)

G1=- 21" (B16y + B262) =7'1 01+ 726, ..(3-73)

Gy =- 21" (BoOy + B3 02) = 1201+ 736, ...(3-74)
2

H= , + (B'10,° + 28'2010, + B'3 0,%)) ...(3-75)
A

The tangent stiffness matrix is:

G’ G, G, G,
Y1t 5 Yo + )
nH n°H H
G’ G,
[t] = (EIL /L) Y3 + ...(3-76)

n° H H

2

T

Sym
H
4.Applications L -

4.1 Introduction

The nonlinear response of structures is generated by an incremental load approach with
Newton — Raphson type of iteration performed at each load increment to satisfy the joint
equilibrium equations. A computer program called (ELDATFEF) is written to carry out
the large displacement elastic stability analysis of plane frames comprised of prismatic or
non-prismatic (tapered and non-uniform) members resting on elastic foundation (Winkler
model). The computer program is coded in (Quick Basic Ver.4.5) language to be used on
IBM.PC computers. The flowchart of this program with a brief description for each

subroutine is shown in appendix B.
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4.2 Examples
Example 1:Finite Beam Subjected to End L oad
A beam of 60 ft (18.288 m) length rests on an elastic foundation. A concentrated

load of 50 kips (222.5 kN) is applied at one — end as shown in Fig.(5-1-a).The other
properties are: area = 23.54 in? (0.0152 m?) , moment of inertia = 1047.08 in* (2 * 10 ~/
m*) and modulus of elasticity = 30000 kips/in* (206850 N/mm?). Al-Hachami [6] solved

this example for small values of (AL), and as he stated, end B must be supported against

both vertical deflection and rotation, otherwise no solution can be obtained. He used six
elements in solving this problem, while in the present study one element is used to get

good agreement between the present study and that mentioned previously, Fig.(5-1-b).

vt O

A B
RN
— L —
P
Fig.(5-1-a) Example 1
250 —
200 —
150 —
=
6 .
K=}
3 100 —|
_I - -
Exam _Non-Prismatic
The same beam st i arfation of section. End depth
ratio = 2.35. Figure; s example. Finite difference
and approximate methods-are-tisec-pthe-analysis—Goodragreement can be seen between

0 100 200 . 300 400 500
Deflection (cm)

Fig.(5-1-b) Graph of Example 1
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the results obtained from the two methods of analysis. Figure (5-2-b) shows the load-

displacement curves of this example for AL= 1.

— L

Fig.(5-2-a) Example 2

250 —

200 —

Load (kN)
I

50 — Led Approximate
—F— Finite Difference

I I I I
0 50 100 150 200 250 300

Deflection (cm)
Fig.(5-2-b) Graph of Example 2
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6. Conclusions

1. The stability and bowing functions can be derived using finite difference method

and finite segment method.

2. For linearly and nonlinearly tapered members resting on elastic foundation,
stability and bowing functions can be estimated approximately by using the stability
and bowing functions for prismatic members using different factors depending on
the tapering ratio, shape factor, axial force parameter and sometimes non-

dimensional soil parameter.

3. The only difference between the analysis of non-prismatic members resting on
elastic foundation and those which are not, when adopting the beam-column
approach, is represented in the stability and bowing functions, and this is reflected

directly on the tangent stiffness matrix.

References

1. Al-Sarraf, S.Z.,”Elastic Instability of Struts on, or Driven into, Elastic Foundation”,
The Structural Engineer, Vol.56B, No.1, March, 1978,pp.13-109.

2. Al-Sarraf, S.Z.,”Elastic Instability of Frames with Uniformly Tapered Members”, The
Structural Engineer, Vol.57B, No.1, March, 1979,pp.18-24

3. Oran, C.,”Tangent Stiffness in Plane Frames”, Journal of the Structural Division,
ASCE, Vol.99, No.ST6, June, 1973,pp.973-985.

4. Gupta, A.K.,”Vibration of Tapered Beams”, Journal of Structural Engineering,
ASCE, Vol.111, No.1, Jan., 1985,pp.19-36.

5. Ghali, A. and Neville, A.M.,”Structural Analysis”, E and FN Spon, London, 4"
Edition, 1997,pp.437-446.

6. Al-Hachami, E.K.,”Large Displacement Analysis of Structures with Applications
to Piles and Submarine Pipelines”, Ph.D. thesis, University of Technology — Iraq,
1997.

89



IJCE-7" ISSUE FEBRUARY-2007

7. Faris, H.A.,” Large Displacement Elastic-Plastic Analysis of Plane Frames with
Non-Prismatic Members of Non-linearly Varying Sections”, Ph.D. thesis, University

of Technology — Iraq, 2002.

8. Oran, C.,”Geometric Nonlinearity in Nonprismatic Members”, Journal of the
Structural Division, ASCE, VVol.100, No.ST7, July, 1974,pp.1473-1487.
9. Al-Ejbari,A.T.,”Large Displacement Elastic Stability Analysis of Plane Frames

with Non-Prismatic Members Resting on Elastic foundation”,Ms.thesis, Al-Anbar

University — Iraq ,2004

Nomenclature

Ao Equivalent cross — sectional area
a L/(U-1)
b1, by Bowing functions for prismatic members
Co Length correction factor due to bowing
[d] Element nodal displacements
di Depth of cross — section at end i
{F} Vector of member end forces in global coordinates
[f] Element nodal forces
G1,G2,H Nonlinear geometric functions

I Variable moment of inertia of the beam-column member
li Moment of inertia at end i

k Stiffness of the elastic foundation
ks Modulus of subgrade reaction
L Initial (undeformed) member chord length
Lc Chord length of deformed member
m Shape factor = Log(l1/12)/Log(U)
P Member axial force
Pe Classical Euler buckling load for a beam-column = n’El/L?
{S} Vector of member end forces in Eulerian coordinates
[T] Member tangent stiffness matrix in global coordinates
[t] Member tangent stiffness matrix in local coordinates
U Tapering ratio = d;/d,
{U} Vector of member end displacements in global coordinates
XY Initial joint global coordinates
Bi Bowing functions for non-prismatic members
Yi Stability functions for non-prismatic member
01 Relative rotation of end 1 of beam-column element
0, Relative rotation of end 2 of beam-column element
A Increment
[1] System (structural) assembled tangent stiffness matrix
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