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ABSTRACT:

In this study an attempt is made to derive governing equations satisfying
equilibrium and compatibility, for multi-layer composite beams with different
layers, materials properties and dimensions for linear material and shear
connector behavior in which the slip (horizontal displacement) and uplift force
(vertical displacement) are taken into consideration. The analysis led to a set of
number differential equations containing derivatives of the fourth and third
order, number of these equations depending on number of layers forming the
beam section. The theory developed for three, four, and five layers. A general
formula were derived to find the governing equations (compatibility and
equilibrium equations) for any layered composite beam.
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1. INTRODUCTION:

Composite construction has been widely used for building construction. A
perfect connection between the components of composite elements exists only
theoretically. Experimental investigation has shown that significant slip occurs
at the interface between these components, even when a large number of
connectors are proved. The modification in the behavior of a composite beam by
the presence of slip was illustrated by analysis conducted by many researchers.
These analyses led to differential equations (number of these equations
depending on the degree of freedom) that are to be solved fresh for each type of
loading and the variation in dimensions or properties of beams. The first
interaction theory that takes account of slip effects was initially formulated by
Newmark [1], based on elastic analysis of composite beams assuming linear
material and shear connector behavior. Adekola [2] present different model
based on interaction theory, which takes account slip, uplift and friction effect.
Using the same element presented by Newmark, Johnson [3] in 1975 proposed a
partial interaction theory for simply supported beams, in which the analysis was
based on elastic theory. The composite beam was assumed to be in linear elastic
materials. Roberts [4] presented an approach for the analysis of composite beam
with partial interaction, in which the basic equilibrium and compatibility
equations were formulated in terms of four independent variables, i.e. the axial
displacements of the concrete and steel and the deflections of the two layers.
Linear elastic materials and shear connector behavior were assumed with the
concrete remaining uncracked, and both the slip and separation at the interface
were incorporated.

In engineering applications, layered systems of various materials are used to
fabricate beams, plates and shells. The procedures commonly employed to
analyze such systems are based on the assumption of rigid interconnection
between layers. If the layers are fastened together with strong adhesives as in
most of the laminated plastics as well as in welded assemblies, the assumption
of rigid interconnection between layers is reasonable. In some widely used
systems, however, such as in composite steel — concrete beams and especialy in
layered wood construction connected with nails, the later assumption is
guestionable. In the past, in the analysis of such problems, only limited
consideration has been given to the effects of the interlayer movements, which
occur as a result of deformation at the connectors. This interlayer movements or
slip between layers can significantly affect overall behavior of a structure [5-12].

Laminated composite beams are very important types of construction in
which the cross-section forms of different layers with different dimensions and
material properties. The derivation deals with beams consist of three, four and
five layers in different materials, different dimensions, different shear stiffness
and normal stiffness for connectors. The analysis leads to a set of basic
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equilibrium and compatibility equations that were formulated in terms of
displacements (horizontal and vertical) of each layer. These differential
equations were expressed in finite difference form, and the resulting
simultaneous algebraic equations were solved numerically.

2.Analytical solution for composite layered beam with partial interaction
(three layers).

The basic concepts of composite beams of three layers, and linear
behavior connected by the connectors, have been discussed in Ref.[13]

3. Analytical solution for composite layer ed beam with partial interaction (four

layers).

In this section, the model, consists of four different layers, different
materials and shear and normal stiffness. The analysis leads to a set of eight
basic equilibrium and compatibility equations formulated in terms of
displacements (horizontal and vertical) of each layer. These differential
equations were expressed in finite difference form, and the resulting
simultaneous algebraic equations were solved numerically.

3.1 Equilibrium

An element of a composite of four layers, length dx, shown in Figure (2).
Subjected to moments, M, shear forces, V, and axial forces F. Subscripts a, b, ¢
and d denote four layers from upper to lower layer, and the local x- axes pass
through the centroids of the materials. If the beam is subjected to distributed
load r per unit length, vertical equilibrium of the whole element gives:

dv, +dv, +dV, +dV, =rdx (D
Dividing equation (1) by dx and taking alimit as dx tends to zero which gives:
Va,x +Vb,x +Vc,x +Vd,x =r (2)

This subscript x denotes differentiation. For live load only (r ) equal to (r,), for
live load and dead load, r isequal to:

F=r,+r +r +r +r, e

In which, r_,r ,r. and r, are the distributed self weight for the four layers.
Loads due to the removal of props used during construction should be
considered as live loads.

Taking moments about the origin of coordinates in the upper layer which gives:
dM, +dM, +dM_+dM, = (V, +V, +V, +V, Jdx +

dx -(4)
@V, +dv, +dV, +V, ).? +dF,.d, +dF..(d, +d,) +dF,.(d, +d, +d.)
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Where d,,d, and d, are the distance between the centroids of any successive

two cross sections.
After neglecting the second order terms and dividing by dx equation (4)
becomes.

Mot My, + M + My, =V, +V, +V +, +F .d +F .(d, +d))

.(5)
+Fy,(d, +d, +d;)
Differentiating equation (5) gives:
M a,xx +M b, xx + Mc,xx +M d,xx :Va,x +Vb,x +Vc,x +Vd,x + I:b,xx'dl + (6)
Fepo(dy +dy) + Fy o (d, +d, +d;) )
Substituting equation (2) into equation (6) gives:
M a,xx +M b, xx + Mc,xx +M dyx - I:b,xx'dl - I:c,xx'(dl + dz) (7)

- Fyx(d+d, +dy) =7
Taking moments about the origin of coordinates in the second layer gives:
dM, +dM, +dM_+dM, = (V, +V, +V, +V, Jdx +
dx .(8)
@V, +dv, +dV, +V, ).? - dF, d, +dF_d, +dF,.(d, +d,)
After neglecting the second order terms and dividing by dxequation (8)

becomes:
M +M b,x + Mc,x + Md,x :Va +Vb +Vc +Vd - I:a,x'dl + I:c,x'dz

> (9
+Fy,(d; +d;) ®)
Differentiating equation (9) gives:

Maxx+bex+Mcxx+dex :Vax+va+vcx+

Vd,x - I:a,xx'dl + I:c,xx'dz + Fd,xx(dz + ds)

Substituting equation (2) into (10) gives:

M a,xx +M b, xx + Mc,xx + Md,xx + I:a,xx'dl - chx(dz) (11)

- Fax(d, +d3) =7
Taking moments about the origin of coordinates in the third layer gives:
dM, +dM, +dM_+dM, = (V, +V, +V, +V, Jdx +

dx .(12)
@V, +dv, +dV, +V, ).?- dF,.(d, +d,) - dF,.d, +dF,.d,
After neglecting the second order terms and dividing by dx equation (12)

becomes:
M + Mb,x + Mc,x + Md,x :Va +Vb +Vc +Vd - Fa,x'(dl + dz) - I:b,x'dz

> (13
+ I:d,xd3 ( )
Differentiating equation (13) gives:
Maxx+bex+Mcxx+dex :Vax+va+vcx+vdx

’ ’ ’ ’ ’ ’ ’ ’ .(14)

- Fa,xx'(dl + dz) - I:b,xx'dz + I:d,xxd3
Substituting equation (2) into (14) gives:
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Moo T M + Mo # M +F oo(dy +dp) + Fy L dy
- Fynds =

For equilibrium of the composite element, shown in Figure (2), in the x-
direction gives:

(0F, +F,)+ (0F, + F,) + [0F, +F.)+(0F, +F,)-

.(15)

(Fa+Fb+Fc+Fd):O -(19)
dF, +dF, +dF, +dF, =0 +(17)
Dividing equation (17) by dx gives:

Fax * Fox + Foy +Fg, =0 -(18)

Equation (7), (11), (15) and (18) are the four basic equilibrium equations
required for the complete solution.

3.2 Compaitibility

Assuming plane sections within each material remains plane, the total
displacement of the upper layer in the x-direction at the interface, denoted by
U, , ISgiven by:
Uai = Uy - Zg Way -(19)
In which z, is the z-coordinate of the interface relative to the local x-z axes and,
u, and w, are the displacements of the upper layer in the x and z directions.
Similarly for the other three layers:

Upi = Up = Zy Wy, -(20)
Ug =Ug - Z45.W,, .(21)
Ugi =Ug - Zy Wy 4 +(22)

The dlip, U_,, at the interface between the first two layers is denoted as the

relative displacement in the x-direction of initially adjacent particles, as shown
in Figure (2). Hence:

Up =V - Uy ..(23)
And between the other layers:

Uy =Uy - Ug (24)
Uy =Ug - Uy (25)
Combining Equations from (19) to (22) into equations from (23) to (25) gives:
Ugp = (Uy - 23 W, ,) - (Uy - Z4 Wy ) ..(26)

Upe = (Uy = 2y Wy ,) - (Ug - Z5.W, ) .(27)
U = (U - 24 W,,) - (Ug - Zg Wy, ) .(28)

If the shear stiffness of the joint per unit length between the upper two layers is
denoted by k_, the shear force per unit length at the interface q,is given by:

ql = ksl U ab . (29)
And between the other layers:
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Oy =Ko Up, -(30)

g, =k U .(31)
And considering the equilibrium of the upper layer in the x-direction gives:
Fax =0 =kqUyg, -(32)
And considering the equilibrium of the second layer in the x-direction gives:
Fox =0, - O (33)
Fox =Ko Uy - Ko U ..(34)
Fax T Fox =0, =K, Uy, ..(35)
Fax T Fox +Fox =03 =kU ..(36)
Substituting for U_, from equation (26) into (32) gives:

Fax - Kal(U, - 25w, ) - (U, - 2, W,,)] =0 .(37)
Substituting for U, from equation (26) and (27) into (35) gives:

Fax ¥ Fox = Kol(Uy - 25 W, ) - (Ug - 25 W,,)] =0 ..(38)
Substituting for U, from equation (28) into (36) gives:

Fax ¥ Fox * Fox - Kal(ue - 25w, ) - (Ug - Z245.wy,)] =0 ..(39)

The separation at the interface between the first upper layers, w,, is the relative
displacement in the z-direction of initially adjacent, as shown in Figure (2-C) is
given by:

W, =w, - w, ..(40)

The separation at the interface between other layers w,, and w,, is given by:
W, =w, - W, -(41)
W, =w, - w, .(42)

If P, denotes the normal force per unit length at the interface, equilibrium for the
first layer in the z-direction is given by:

Va,x:ri+ra+P1 (43)

If P, denotes the normal force per unit length at the interface, equilibrium for
the second layer in the z-direction is given by:

Vox =B - B +r1y ..(44)

Vax *Vou =R +r +r1 +r1, ..(45)

If P, denotes the normal force per unit length at the interface, equilibrium For
the third layer in the z-direction is given by:

V,=P- PR +r, ..(46)
Consider the moment equilibrium of the upper layer about the origin of
coordinates which gives,

Va = Ma,x +q1'zai . (47)
Consider the moment equilibrium of the second layer about the origin of
coordinates which gives:



| JCE-9" ISSUE December-2007

Vo =My, +0,.2, - ;.2 ..(48)

Consider the moment equilibrium of the third layer about the origin of
coordinates which gives:

V. =M, +05.2; - 0,.24 ..(49)
Differentiating equation (47), (48) and (49) gives:

Vax =M + 0142y ..(50)
Vox =My + 0px-Zy = Oix-Zy .(51)
Vox =M + U352 - Upi-Zg .(52)
Differentiating equation (32), (35) and (36) with respect to (x) gives:

Fa = Oux .(53)
Faoc t Fopoc = Gox ..(54)
Fome* Fosoc Fam = G, (55)
Substituting equations (50) to (52) into (53) to (55) gives:

Vo =M, + FoZa ..(56)
Voy =My o + oo Zs ..(57)
V., =M o +F. 2 ..(58)
Substituting equations (44) and (46) into equation from (56) to (58) gives:
Mo t FoxZy =P - R +ry ..(59)
Mo + FoZg =Py- Po+r ..(60)

If the normal stiffness of the joint per unit length between the upper layers, is
denoted by (k) then:

Pl = knl'\Nba = knl'(Wb - Wa) (61)

If the normal stiffness of the joint per unit length between the middle layers, is
denoted by (k_,) then:

Pz = an ch = an'(Wc - Wb) (62)

If the normal stiffness of the joint per unit length between the lower layers, is
denoted by (k,,) then:

Py = Kig Wee = K- (Wy - W) --(63)

Substituting equations (61), (62), and (63) into equations (59) and (60) gives:
Moo + Fopoc-Zoi + Kg (Wy - W,) - Ko (W - W) =1y, ..(64)
Mc,xx + Fc,xx"zci + an(Wc - Wb) - kns(Wd - Wc) =r. --(65)

Subtracting equation (63) from (64) which gives:

Mb,xx + I:b,xx'zbi + knl(Wb - Wa) - 2'kn2'(Wc - Wb) (66)
- Mc,xx - I:c,xx'zci + kns(Wd - Wc) =ry-re "

Equations, (37), (38), (39) and (66) are the four basic compatibility equations
required for a complete solution.
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3.3 Basic differential equations

From the analytical model, the eight independent differential equations
(equilibrium and compatibility), may be expressed in terms of displacement
variables, (u,,w,,u,,w,u_,w,u,) and (w,) asfollows:
Assuming plane sections within each material remains plane, the axial strain (e)
can be expressed in terms of displacements (u ,w ) relative to the local (x) and

(z —axes), which are assumed to pass through the centroid of the four materials.
Hence:

€. :Uat,x :Ua,x = Zy W, (67)
€ ZUpx TUpy - 2y W, ..(68)
€. :Uct,x =Ucx 2o W (69)
€ TUgx TUqy - Zg:Wy ..(70)

Where subscripts (a, b, ¢) and (d) denote the layers. Subscript (X) denotes
differentiation and (z) the distance form the origin of coordinates to the limits of
the layers.

Stresses now can be related to strain via the material properties (E,,E,,E,) and

(E,). For linear elastic materials (E,,E,,E.) and (E,) are constants, but for non-
linear elastic and elasto-plastic materias, (E,,E,,E,) and (E,) are functions of

strain.
The free strain due to shrinkage, temperature etc, is denoted by (e, ), while the

strain induced during the construction sequence is denoted by (e ). Hence, if
(u) and (w ) are assumed to exclude the displacements corresponding, to (e;)

and (e, ), the stresses in the layers are given by:

S.*= Ea (ua,x -z 'Wa,xx +era - efa) (71)
Sp = Ep(Upy - Z, W, +€, - €4) .(72)
S¢= Ec(uc,x - Zc'Wc,xx +erc - efc) (73)
Sg =Eq(Ugy- Zg- Wy t€4 - €4) .(74)

The axial forces (F,,F,,F.) and (F,) and moments (M_,M,,M_) and (M,) are
obtained by integrating the stresses, multiplying by the appropriate lever arms,
(z,,2,,z.) and (z,), in the case of moments over the cross section area of each
layer denoted by (A,,A,,A) and (A,) Hence:

Fo=(s.dA .(75)
F, = (S »-0A, ..(76)
F. =(s..dA (77)

Fy = (s 4-dA, .(78)
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M, =-(S.Z.dA, .(79)
M, =- (S ,.2,.0A, ..(80)
M, =-(S.z.dA .(81)
Mgy =- (S ¢.24.0A .(82)

Substituting equations (71), (72), (73), (74) into equations from (75) to (82)
which gives:

F. = CEa'(ua,x " ZaWa e T - efa)dAa ..(83)
Fy = CEb'(ub,x " Zy Wy T €, - efb)dAa (84)

F. = CEC'(uc,x " ZoWe i € - efc)d& ..(85)

Fy = CEd'(ud,x " Zy Wy € - efd)dAu ..(86)

M, =- CEa'(ua,x " ZyWo i T - €1)-Z,.dA, ..(87)

My =- CEb'(ub,x " ZyWo o T € - €4)-Z,-0A, (88)
M¢=- CEC'(uc,x " ZWe i € - €)-Zo.dA, ..(89)

My = - CEq-(Uax - Zg- Wy ot 8 - €).2Z5.0A, ..(90)

IF E,,E, E., and E, are constants, integration of equations from (83) to (90)
which gives:

Fa = Ea'Aa'ua,x + Ea'(éra - éfa) ..(91)

Fb = Eb"%'ub,x + Eb'(érb - éfb) ..(92)

F, = E. AU, +E.(6 - &) .(93)

Fd = Ed 'Ad'ud,x + Ed'(érd - éfd) ..(94)
M, = E,.l, W, ..(95)

My = Byl p W ..(96)

M, = E.l W, .(97)

My = Eq.lq Wy ..(98)

Inwhich, 1,,1,,1., and I, are the second moments of area for the layersand € is
the integration of the strain function over the cross sectional area of the
corresponding materials.

The following are the eight governing equations derived for four layers
composite beam:

M a,xx +M b, xx +M C, XX +M dxx I:b,xx'dl - I:c,xx'(dl + dz) (99)
- Fyu(dy+d, +dy) =7 h
M a,xx +M b, xx + Mc,xx + Md,xx + I:a,xx'dl - chx(dz) (100)

- Fd,xx(dz +dy)=r
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M a,xx +M b, xx + Mc,xx +M d,xx + I:a,xx'(dl + dZ) + I:b,xx'dz

CF, d =t ..(101)
TR L L =0 ()
Fax = Kal(Us - 2. W) - (U - 23 W, )] =0 (103)
Fax * Fox - Keal(Up - Z Wy, ) - (U - Zg. W, )] =0 .(104)
Fax * Fox ¥ Fox - Kal(Ue - ZgW,) - (Ug - Z4.Wy,)] =0 -(105)
Moo t FoscrZa + K (W, - W) - 2K, (W, - W) ..(106)

- Mc,xx - I:c,xx'zci +kn3(Wd - Wc) =rp-Tg

After substituting equations from (91) to (98) into equations from (99) to (106)
which gives:
Eala W, oo ¥ Bl oW e T Bl e We oo T Bl g Wy oo = Eip- A0y U o

c'' C C, XXX

- Eb(érb - éfb),)o('dl- (d1+d2)'Ec'A:'uc,xxx_ Ec'(d1+d2)(érc - éfc),xx (107)
- (dy+dy +d3) By Ay Uy oo - (dy +d, +05). By (8 - €g) o =T

Eacl a W, oo T Epel b Wh oo F Ec -l e W oo T Eg ol g Wy oo T Ea-Ardy U, o
+E, (€, - €,) x0: - . ECA U o - Ecd, (B - €) ..(108)
- (dy +d3).Eq Ay Ug o - Eq(dy +03)(6 - €4g) o =T

Eola W oo F Ep by Wo oo Bl e We oo Bl g - Wy oo
+ Ea'Aa'(dl + dz)'ua,xxx + Ea(éa - éa),xx'(dl + dz) + dZ'Eb'Aa'ub,m (109)
+E,d, (6, - €) - d3.Eg Ayl - Eq05(Ey - €) o =T

Ea'Aa'ua,xx + Ea'(éra - éfa),x + Eb'A)'ub,xx + Eb (érb - éfb),x

(110

+ Ec'Az'uc,xx + Ec'(érc - éfc),x + Ed A;i 'ud,xx + Ed (éd - éd),x = 0
Ea'Aa'ua,xx + Ea'(éra - éfa),x - ksl[(ua - Za\i 'Wa,x) - (ub - Zbi 'Wb,x)] =0 (111)
Ea'&'ua,xx + Ea'(éra - éfa),x + Eb'AJ'ub,xx + Eb(érb - éfb),x

(112)
- ksz[(ub - Zbi 'Wb,x) - (uc - Zci 'Wc,x)] = 0
Ea'Aa'ua,xx + Ea'(éra - éfa),x + Eb'A)'ub,xx + Eb (érb - éfb),x

.(113)
+ Ec'Az'uc,xx + Ec(érc - éfc) - kss[(uc -z 'Wc,x) - (ud - Ly 'Wd,x)] =0
Eo-loWo oo ¥ Ep-Ay Uy oo Zo + B2 (8 - €5,) 1 -
Ec'l " We oo Ec'Az'uc,xxx'Zci - Ec'zci (érc - éfc) + (114)

knl(Wb - Wa) - 2kn2'(Wc - Wb)+ knB(Wd - W ) =T b~ r

10
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3.4 Numerical solutions
Equations (107) to (114) contain derivative of third order in u and fourth

order in w, which can be expressed in finite (central) difference form using five

node points.

After expressing equations (107) to (114) in finite difference form, the
complete solution system of algebraic equations, eight degrees of freedom per
node, can be solved for the unknown displacements at the nodes, and it required
two external nodes are required at each end of the beam.

3.5 Boundary conditions.

Solution of the resulting set of agebraic equations requires the
specification of boundary conditions. In general, the equations contain a
derivative of fourth order and required two external nodes to specify the
boundary conditions at each end. However, if each external node is assigned
eight degree of freedom per node, so sixteen boundary conditions are required
for each end of the beam must be specified.

w, =0 a x=0 whenx=L ..(115)

W, =0 a x=0 when x=L .(116)
Wy, =0 a x=0 when x=L .(117)
W, 0 = a x=0 when x=L ..(118)
Wy, =0 a x=0 when x=L (119

u, =0 a x=0 ..(120)
Uy, =0 a x=L .(121)

u,, =0 a x=0 when x=L .(122)
Uy, =0 a x=0 when x=L .(123)
U, =0 a x=0 when x=L .(124)

V, +V, +V, +V, =R a x=0 ..(125)
V, +V, +V, +V, =R a  x=L ..(126)

Uy o =0 a x=0 when x=L ..(127)
Up ooex = O a x=0 when x=L ..(128)
U g = O a x=0 when x=L ..(129)
Ug pox = 0 a x=0 when x=L ..(130)
Uypy =0 a x=0 when x=L .(131)
Uy, =0 a x=0 when x=L .(132)

Where (R ) and (R) are the reactions at the supports, equation (125) and (126)

express the conditions that the sum of the shear forces in the layers are equal to
the support reaction (R) and (R). The forces (v,,v,,v.) and (V,) can be
expressed in terms of displacement derivatives as follows, consider moment

11
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equilibrium of the upper layer about the origin of coordinate, Figure (2), which
gives:

Va=M,, +F0 2y .(133)
Similarly, for second layer:

Vo =My, + Ry 02y .(134)
And for other layers:

Ve =M+ Rz, ..(135)
Vy =My, +Fy .2 ..(136)

Substituting the forces and moments in terms of derivatives from equation (91)
to (98) into equations from (133) to (136), which gives:

V, =E .l W, o +E,.A .2, +E,.Z,.(€,, - €,) , ..(137)
Vi = Bl Wy oo + By A2y +E,.Z,.(8, - €5) -(138)
V, = Bl oW, 0 + B A2y +E(.Z,.(€,c - €) ..(139)
Vy = Egul g Wy o + Eg Ay .Zg +E(.24. (€4 - €1) ..(140)

And for the latest boundary conditions, substituting equation (27) into (132)
which gives:

ch,x = (ub,x - Z 'Wb,>0() - (uc,x -z 'Wc,xx) (141)
But equation (4.259) into afinite difference forms, which gives:

1 z
— U, -2u +u, )- —=(W, -2w, +2w, -w )-
2 \Fbyy by, b1 3 Dnso by 1 h-1 by 2
Dx 2.Dx (142)

('Wcmz B 2'ch-1 + 2'W0n-1 B ch-z) =0

1
W(ucnﬂ - 2'ucn + ucn-l) + 2DX3

The main equations after substituting the finite difference form become:

E..l E, .l
a""a _ _ b."" b _
DX4 (Wamzw 4'Wan+1 + 6'Wan 4'Wan-1 + Wan-z ) + DX4 (Wbmz 4'Wb+n1 + 6an
4 + +Eele 4 +6 4 + +Ealy 4
B 'an-l an-z) DX4 (Wcmz B 'Wcml .ch B 'ch-l WCn-z) DX4 (dez - AW

| T (149)
E A. _ _
+ 6de - 4de,1 +de_2) - ;3‘;(3 : (ubm - 2-ubn+l + 2'ubn_1 - ubn,z) - Eb'dl'(erb - efb),xx
_E.A(d +d,)
2.0x3
_EgAd +d, +dy)

2Dx?

(ucmz - 2'ucml + 2'ucn,1 - ucn,z)_ Ec'(dl + dz)'(érc - éfc),xx

(udn+2 - 2udn+l + 2udn,1 - udn,z) - Ed (dl + dz + ds)(e_rd - éfd),xx =r

E,.l,
4 (Wa +2)
Dx n+2w

I b
4

E
b
- 4.Wam + 6.Wan - 4.Wan_1 +Wan_2) + x (Wbm - 4.Wbm + 6.an

E. .| E. .l
4w, tw, )+F—="C(w,  -4w, +6w, -4w, +w, )+—212
h-1 h- 2 DX n+2 n+l n n-1 n-2 DX4

4
E,.A,.d,
2.Dx3

. (144)

(W, - 4Wy | +6W, - 4w, +w, )+ (U, - 2U, , +2u, -u, )

’ an-l

E..Ad
+ Ea'dl'(éra - éfa) - AC 2 (ucn+2 - 2u +2u

XX 2.DX3 Ch1 Ch1
_EiA(dy +dy)
2Dx°

- ucn_z) - Ec'dZ'(érc - éfc)

(udm B 2udn+1 + zudn,l - udn,z) -Eg(dy+d ) (8- €4) o =T

12
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202, - 4w, 6w,

Bl
D¢*

(\Ndmz B 4\Aldn+l +6\Ndn B 4\Ndn-1 +\Ndn-2) +%.(1:-C12)(u3m2 B 2u3n+1 +2uan-1 B uan-z) (145)
Eb Ad,

E .
Dx*

-4% +W, )+

(Wan+2w B 4'Wan+1 +6'Wan B 4'Wan-1 +Wan-2) +

El

(W, -4w, +6w -4w +w )+

+Ea (d +d2) (éra efa) +
_EAG
D¢
E..A.
Dx

_ _ E..
(U, - 2u, tu, )+E.(€,-€,) .+ ngéb (U, - 2u, +U, )

(ubﬂ - 2.u,0ﬂ+1 +2.u,0ﬂ_1 - ubﬂ_z) +E.d,.€,-€)

(udm - 2udn+1 +2udn_1 - udn_z)- Eqd(Eq- €4) =T

+E,.(Ep- €p) Tt C'%(u - 2u, +u, )+E.(E.-€.),+ ..(146)
Eq-As

Uy - 20, +uy )+E (€4 -€4), =0

)+

Ea'Aa — — ksl'zai
~E (U,  -2u, +u, )+E,.(6,-€y),- kyU, +m(wal W,

.(147)

ksl'zbl
2..Dx

E_A. _ _ E .
Ia)?a (u, -2u, +u, )+E.(€,-€,), +Ib)(—';‘"(u,on+1 - 2u, +u, )

+ ksl.ubn - (Wbm - an_l) =0

.(148)
— — ksz-zbi ksZ ZCI —
+ Eb'(erb - efb),x - ksz-uq "'H(an+1 - an_l) + ksZ'ucn 2 Dx (W - ch_l) =0

E.A. E, .
IaDXAZa ('uaml - 2'ua,1 +'uan_1) + Ea'(éra - éfa),xx +|;X—é)(ubn+1 - 2'ub,1 +ubn_1)

E..
+E,.(E, - €4), + DX/;\C (U, -2u, +u. )+E/(E,-€.), ..(149)

K 24
23D; (W, d,, dn_l):O

)t bzg(azm (U, , -

Z .(Wbm - 4.Wb+n1 + 6.an - 4.an_1 +W,

K.z,
s3* i
- ks3'uc,1 + 2 Dx (ch+1 - ch_l) + ks3'ud,1 -

+2U, -U, )+E,.Z;(€4- €4) -

E..A-Z;
Cn-1 +WCn-2) 2DX3
+kn1'(an - Wan)- 2kn2'(ch - an)+kn3(de - ch) =r,-r

(W, - 4w, +6w,

Cn+2 Ch+1 Cn B (150)
——u, -2, +2u -u._)-E.z;(€, -€.)

Ch+1 Cn-1

C

4.General formula

According to the governing equations obtained from the analytical model
of three, four, and five layers, a general formula can be obtained by the
following sequence:

13
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1.Fork=1ton-1

3 3 5! S 3 3 (151
aMi,xx- a lex(a dj)+ a lex(a dj):rl+ari ( )
i=1 i=k+1 j=k i=k-1 j=1 i=1

2.

$F =0 .(152)

1

3. Fork=1ton-1

2 (153
a I:i,x - [kS('U(k,kﬂ)] =0 ( )

i=1

n-1 n-2 )
4'5. {(' 1)k[M K, xx + Fk,xx'zki]} + knl(WZ - Wl) + é. 2(' 1)Jﬂ'knj '(W'+1 B Wi )]

]

=2 _ =2 ..(154)

n-1
-k, (W, - W, ) =8 (- )kr
k=2

5 Procedure of application

The following procedure is used for applications of the general formula
introduced in section (4.5). Number of equations depends on the number of
layers and equal to (n*2) where n is number of layers. For example, the
governing equations for four layer composite beams equal to (8) equations and
can be derived directly as follows;
Number of layers (n)=4
Number of equations=8
Variablesk, I, j are counters
For k=1ton-1
Equation (1)
k=1
n=4
Ml,XX
- Fyu(d; +d, +d;y) =7
Equation (2)
k=2
n=4
Ml,XX
- Funl(dy +d) =7
Equation (3)
k=3

+M2,XX+M3,XX+M4,XX- F

2,xx*

dl - F3,xx'(d1 + dz) (155)

+M2,>O<+M3,XX+M4,XX+F

Ixx*

dl - F3xx(d2) (156)

14
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n=4
Ml,xx + M 2,XX + M3,xx + M 4,xx + I:1,><x'(dl + dz) + FZ,XX'dZ
- Fyods =

End loop

Equation (4)

F tF +F, +F,, =0 ..(158)
For k=1to n-1

Equation (5)

k=1

n=4

Fix- kol - zpwy,) - (Uy - 2;.w,,)] =0 (159)
Equation (6)

k=2

n=4

Fl,x + Fz,x - ksz[(uz - -Wz,x) - (Us - 2y 'W3,x)] =0 --(160)
Equation (7)

k=3

n=4

Fl,x + Fz,x + F3,x B kss[(us R4 'W3,x) - (U, - 2, 'W4,x)] =0 (161)
End loop

Equation (8)

M 2,%% + FZ,xx'ZZi + knl(WZ - Wl) - 2'kn2'(W3 - Wz)
-M

(157)

.(162)

- FancZy +Ka(Wy - W) =1 ,- 1,

3,xx

Subscripts (1, 2, 3) and (4) represents layers (a, b, ¢) and (d) respectively.

15
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Figure (1-a) Composite layered beam
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Figure (1-b) Composite layers element in Slip

16



| JCE-9" ISSUE

December-2007

R EREE
SN EE

Vc [VC+8VC

Figure (1-c) Composite layers in separation

Figure (1) Composite three layers element
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Figure (2-b) Composite four layers element in slip
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Figure (2-c) Composite four layers in separation
Figure (2) Composite four layers element.
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Figure (3-b) Composite five layers element in Slip
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Figure (3-c) Composite five layers in separation

Figure (3) Composite five layers element beam.
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Conclusion

Composite multi-layered beams is relatively new techniques used in
many engineering fields, specially marine construction for the major benefits
provided by such structures. A derivations of three, four and five layers
composite simply supported beams based on Roberts approach led to set of
governing partial differential equations, using equilibrium and compatibility
conditions, which can be solved by finite difference method with a proper
boundary conditions , No. of these equations depending on D.O.F in each layer.
General formula was derived to obtained the governing equations for and layer
composite simply supported beam under uniform loading.
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NOTATION
a, b, and c= Subscript denotes different layers.
A, A and A = Cross-sectional area of different layers.

A= Effective width of concrete slab.
d,and d,=Distance between the centroids of successive layers.

E, = Modulus of elasticity of concrete.

E, = Modulus of elasticity of steel.

E.. E,and E . =Modulus of elasticity of different layers.

F, ,F, and F,=The axial forcesin different layers.

h,, h, and h,= Thickness of different layers.

l,, I, and I, =Second moment of areafor the layer a.

|, and I, = Moment of inertia of concrete slab and steel about its own centroid.

k, and k_, =Shear stiffness of the joint per unit length between successive layers.
k,and k ,=Normal stiffness of the joint per unit length between successive layers.
L = spanlength.

M= External applied moment.

M,, M, and M, =Moment for layer a

P,and P, =Normal force per unit length at the upper and lower interface.
r,=Live load.

r =Live load and dead load.

r,, rp,and r = Distributed self-weight of layer a

R, R =Reaction at the right and the left supports.

U, and U, = Slip between upper and lower layers.

u,, u,and u,=Displacements of the different layersin the x -direction.

W= Point load.

w,, w, and w, =Displacements of the layer a, b and ¢ in the z -direction.

W, , W, =Separation at the interface between the upper and lower layers.

X.= Subscript denote differentiation.
z,, z, andz,, =Z-coordinate of interface relative to local x-z axesin layers a, b and c.

e, =Free strain due to shrinkage, temperature etc.
e, = Strain induced during the construction sequence.
€ =Integration of strain function over cross section area of the material.
e,, e,and e =Strainin layersa, b and c.
S,., S,and s .=Stressinlayersa, b and c.
Dx =Spacing between nodes.
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