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The buckling analysis of Euler-Bernoulli beam resting on two-parameter 
elastic foundation (EBBo2PEF) has important applications in the analysis 
and design of foundation structures, buried gas pipeline systems and other 
soil-structure interaction systems under compressive loads. This study 
investigates the buckling analysis of EBBo2PEFs. The governing differential 
equation of elastic stability (GDiES) is derived in this work using first 
principles equilibrium method. In general, the GDiES is an inhomogeneous 
equation with variable parameters for non-prismatic beams under 
distributed transverse loadings. However, when transverse loads are absent 
and the beam is prismatic the GDiES becomes a fourth order ordinary 
differential constant parameter homogeneous equation. General solution to 
GDiES is obtained in this work using the classical trial exponential function 
method of solving equations. Two cases of end supports were considered: 
simply supported ends and clamped ends. Boundary conditions (BCs) were 
used to obtain the characteristic buckling equations whose eigenvalues 
were used to determine the critical buckling loads for two cases of BCs 
considered. It was found that the method gave exact solutions for each of the 
BCs. The critical elastic buckling load coefficients for dimensionless beam-
foundation parameter �̂�1 and �̂�2  ranging from �̂�1 = 0, 1, 100; �̂�2 =
0, 0.5, 1, 2.5  for simply supported EBBo2PEFs were identical with previous 
results that used Stodola-Vianello iteration methods and finite element 
method. Similarly, the critical buckling load coefficients for �̂�1 =
0, 1, 50, 100 and �̂�2 = 0, 0.5, 1, 2.5 are identical with previous results that 
used Ritz variational method. 
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1. Introduction  

The theme of beam on elastic foundation is used for the analysis of foundation structures, railroads, airport, 

runways, dam embankments and buried gas pipeline systems. Buckling is one of the most disadvantageous types 

of instability for beams under compressive forces, and must be studied and considered for safety in their design 

(Timoshenko & Gere,1985). 

Beam on elastic foundation theories (BoEFTs) have been derived using variational methods or equilibrium 

methods. Irrespective of the method used, the equations are seen to incorporate the elastic foundation’s reaction 

https://doi.org/10.37650/ijce.2024.180211
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into the beam model equation used to describe the beam. The effect of the elastic foundation thus modifies the 

governing equation of the beam under buckling. The simplest beam model is the thin beam model that is valid 

for thickness to span ratios that are less than 0.05. Such a model was derived by Euler and Bernoulli for bending 

and is called Eulier-Bernoulli beam theory (EBBT). EBBT assumes that the beam cross-sections are orthogonal 

to the middle plane before, and after deformation, and the middle plane is free of axial deformation. This renders 

EBBT unable to consider transverse shear strains which are responsible for causing distortions of the cross-

sections. This limits the application of EBBT to thin or slender beams for which transverse shear deformations 

are negligible. EBBT has been extended to buckling and vibration of thin beams. 

Research efforts to extend beam theory to moderately thick beams and consider transverse shear deformation 

led to the developments of Timoshenko beam theory (TBT), and shear deformation beam theories by Dahake 

and Ghugal (2013), Levinson (1981), and Sayyad and Ghugal (2011) for beams with thickness to span ratios 

greater than 0.05. This work explores thin beams and hence used EBBT. 

Elastic foundations have been modeled using two fundamental approaches; discrete or lumped 

parametrization and continuously distributed parametrization. The mathematical theory of elasticity is used in 

continuously distributed parameter models to formulate the soil reactions. They are consequently difficult to 

formulate, and are rarely used due to extreme rigours of mathematics involved.  

Discrete parameter models are commonly used and have been much researched on because of their simple 

mathematical forms. 

The lumped parameter models that are common include: (i) Winkler model, a one parameter model, (ii) 

Pasternak, Hetenyi, Vlasov, Filonenko-Borodich, which are two parameter models, and (iii) Kerr (1985) three-

parameter model. 

The Winkler-Zimmerman model shown in Figure 1 assumes the soil is a system of vertical, closely spaced, 

independent, linear elastic springs that has a stiffness which is proportional to the deflection at any point on the 

beam. 

 

 

Fig. 1 Winkler-Zimmerman foundation model 

 

Winkler-Zimmerman elastic foundation model has been criticized because the deformation of the foundation 

occurs only in the vicinity of the applied load, resulting in issues of discontinuity in the deflection (Akhazhanov 

et al., 2023). The model thus disregards the deformation of areas that are in the vicinity of the applied point 

loads. Another reason for criticizing the Winkler method is the lack of certainty in the method for finding the 

Winkler parameter. 

The Winkler-Zimmerman foundation model is the simple equation: 

 

1
( ) ( )

f
r x k w x=           (1) 

 

where rf(x) is the foundation reaction, k1 is the Winkler constant, w(x) is the beam transverse deflection. 

Two-parameter foundation model is adopted in this study and shown in Figure 2. 
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Fig. 2 Thin beam resting on two-parameter foundation model 

 

The two-parameter foundation model was formulated to account for the discontinuity defects of the one-

parameter model. The second parameter k2 is defined as a parameter coupling the set of vertical springs as is 

represented in the Figure 2, and thus representing the coupling of the vertical springs to ensure continuity of the 

deflections. 

The two-parameter elastic foundation model equation is given by the simple equation: 

 
2

1 2 2

( )
( ) ( )

f

d w x
r x k w x k

dx
= −          (2) 

 

Wstawska, Magnucki and Kedzia (2022) presented analytical and numerical studies of thin axially 

compressed beam resting on a variable Winkler foundation. Wstawska, Magnucki and Kedzia (2019) used 

approximate methods of solving boundary value problems for the stability analysis of homogeneous beam on 

elastic foundation. 

Palacio-Betancur and Aristizabal-Ochoa (2019) studied the static flexure, buckling and vibration analysis of 

non-prismatic beam-columns with semi-rigid connections rested on elastic foundation. Atay and Coskun (2009) 

utilized the variational iteration method (VIM) to develop closed form solutions for the elastic stability of 

uniform homogeneous beams resting on Winkler foundation for various cases of boundary conditions. 

Dutta et al. (2021) derived a first order three noded slender beam element using fifth order displacement 

functions for the solutions of slender beam on Pasternak foundation. They used a MATLAB computer program 

and obtained accurate results, when compared with the literature. 

Al-Ejbari , Faris, and Al-Jumaily (2007) presented a theoretical analysis for approximately solving the in-

plane large displacement elastic buckling problems of non-prismatic structures on Winkler foundations. The 

work modeled the structures as beam-columns resting on Winkler foundations. The axial forces are considered 

in the Euler approach to the flexural formulation of the beam-column. Finite difference and finite element 

methods were used in their work as the numerical tools for solving the geometrically nonlinear buckling 

problem. 

Baraldi (2019) presented a simple numerical model for sandwich composites resting on an elastic layer. The 

thin beam hypothesis and an approximate expression of the Green’s function of an elastic layer on a rigid base 

was adopted in the work. A simple finite element boundary integral equation method was used for the static and 

buckling analysis of the thin beam in frictionless contact with the elastic layer. Their work used a mixed 

variational formulation that assumed that both beam displacements and contact reactions between the beam and 

the layer are independent fields. Numerical analysis reveals that a beam on thick layer unbounded to the rigid 

base has similar results as a beam on a half-plane. 

Kuliński and Przybylski (2015) studied buckling load analysis of stepped beams resting on elastic 

foundations. Mohammed, Hareb and Eqal (2021) studied the stability problem of functionally graded material 

(FGM) thin beams resting on Winkler-Pasternak elastic foundations. Loya et al. (2023) investigated the 

buckling loads behaviour of cracked Euler-Bernoulli columns embedded in Winkler medium. Nguyen et al. 

(2023) used the Legendre-Ritz method to find solutions for the buckling of porous beams on elastic foundation. 

Mellal et al. (2023) studied the buckling of porous functionally graded (FG) beams supported on variable elastic 

foundation by using higher order shear deformation beam theory to model the porous FG beam. 
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Abramian et al. (2021) studied the buckling loads for a vibrating clamped thin beam resting on non-

homogeneous elastic foundations for various types of non-homogeneities and for various types of damping 

models. They used Rayleigh variational method, but did not however derive exact buckling solutions for axially 

loaded beams on homogeneous elastic foundations. 

Hamed et al. (2020) investigated stability analysis of sandwich beams on elastic foundation under varying 

inplane loads. Patel (2019) presented dynamic stability of axially loaded beams on elastic foundations problem. 

Taha (2014) presented recursive differentiation method (RDM) for solving boundary value problems (BVPs) 

and showed its application to the analysis of beam-columns resting on elastic foundation. RDM relies on Taylor 

series expansion methods and was found useful as a numerical solutions method for BVPs. Later, Hassan and 

Hadima (2015), used the RDM for the analysis of non-uniform beams rested on elastic foundations. Other 

applications of RDM for the analysis of vibration and buckling problems of beam on elastic foundation were 

done by Hassan and Doha (2015). 

Hetenyi (1946), Timoshenko and Gere (1985) and Wang et al. (2005) have presented exact solutions for 

buckling problems by seeking mathematically rigorous solutions to the governing equations. In their studies, 

they obtained analytical expressions that satisfied the governing equations of elastic stability at all points on the 

domain and simultaneously satisfied the displacement and force boundary conditions at the supported ends. 

Hassan (2008) also presented exact buckling solutions to thin beam on elastic foundations of the Winkler type 

but did not consider two parameter foundations. 

Akgöz et al. (2016) used discrete singular convolution method for the static flexural analysis of beam on 

elastic foundation, but did not consider buckling analysis. Anghel and Mares (2019) presented an integral 

formulation for the dynamic and buckling analysis of beams on elastic foundation and used collocation methods 

to obtain accurate vibration and buckling solutions. Their solutions needed a large number of collocation points 

to achieve accuracy, at the expense of tedious algebraic work. 

Aristizabal-Ochoa (2013) studied the EBBoEF problem for generalized boundary conditions as the EBBoEF 

is analogous to the slender column on an elastic foundation problem. Naidu and Rao (1995) presented buckling 

solutions for uniform beams on two parameter foundations using finite element methodology (FEM). FEM was 

also used for Timoshenko beams in elastic foundation by Soltani (2020). 

Rao and Raju (2002) derived analytical solutions for dynamic and buckling analysis of thin beam on 

Pasternak foundations. Hariz et al. (2022) studied the buckling analysis of Timoshenko beams on two-parameter 

elastic foundation. 

Ike (2018a) studied the finite sine transformation method (FSTM) for the natural transverse vibration 

analysis of EBBoWF with Dirichlet boundary conditions. The sinusoidal kernel funcrtion in the integral 

transformation satisfies the Dirichlet boundary conditions, rendering the FSTM suitable for the problem. 

However, the study did not consider buckling problems. Ike (2018b) used point collocation method (PCM) for 

the approximate solutions of static flexural analysis of thin beam on Winkler foundation. PCMs aim to solve the 

BVP at discrete, known collocation points and not over the entire domain rendering the method approximate. 

The study did not consider buckling analysis. Ike (2022) used Reissner functional minimization method for 

bending analysis of EBBoWF but did not consider buckling and two-parameter foundations. 

Ike (2023a) used generalized integral transformation method (GITM) for free transverse vibration solutions 

of EBBoWF for different boundary conditions. The GITM used eigenfunctions of vibrating beams with 

equivalent end supports to drive exact analytical solutions to the vibration problem. However, buckling analysis 

was not considered in the study. Ike (2023b) used Stodola-Vianello iteration method (SVIM) to determine exact 

buckling load solutions of simply supported Euler-Bernoulli beams on Pasternak foundation (EBBoPF). The 

exact buckling shape functions for the Dirichlet boundary conditions were used to find the exact buckling loads 

for any mode of buckling. Exact critical buckling loads were found at the first mode. 

Ike (2023c) used Stodola-Vianello iteration method and algebraic polynomial shape functions that satisfied 

simple end supports to derive approximate but accurate buckling load solutions for simply supported Euler-

Bernoulli beams on two-parameter elastic foundations (EBBo2PEFs). Ike (2023d) explored SVIM for the 

determination of critical buckling load solutions for simply supported EBBoWFs. The work used fourth order 

polynomial shape functions that were constructed to satisfy the simply supported BCs leading to a one-

parameter displacement shape function. Accurate buckling solutions were obtained by assuming convergence 

after the first iteration. Ike (2023e) used exact sinusoidal shape functions in the SVIM to define the exact 

buckling loads for any mode for a simply supported EBBoWF. Ike (2024a) used Fourier series method to derive 
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exact buckling solutions to the BVP of simply supported EBBo2PEFs. The Fourier series method was found 

particularly ideal for the study because the infinite Fourier sine series adopted satisfied all the deformation and 

force boundary conditions and was also made to satisfy the domain equations. Ike (2024b) used Ritz variational 

method to derive the accurate solutions to the buckling of EBBo2PEFs for different boundary conditions, 

including simple end supports, clamped-clamped ends and clamped-free ends. The RVM adopted is based on 

the principle of minimizing the total potential energy functional for the buckling EBBo2PEF. Buckling shape 

functions that satisfied the boundary conditions for simply supported, clamped ends and clamped-free ends were 

constructed using polynomial functions and used in the total potential energy functional to express  in terms of 

the generalized displacement parameters of the buckling displacement function. Subsequently,  was 

minimized to obtain an eigenvalue problem which was solved for nontrivial solution conditions to obtain the 

buckling loads from the roots of the characteristic buckling equation. Ike (2024c) developed critical buckling 

load solutions of Euler-Bernoulli beams on two-parameter elastic foundations using Galerkin variational method 

(GVM) and polynomial basis functions. Polynomial basis functions were derived in the work for pinned-pinned 

supported, clamped-clamped ends, clamped-simply supported ends and used in the GVM to express the 

governing PDE as an algebraic equation in terms of the displacement parameters. Reasonably accurate buckling 

load solutions were derived for the boundary conditions considered. 

Ike et al. (2018) explored Picard’s successive iteration method for the elastic solutions of Euler columns with 

pinned ends but did not consider elastic foundation interaction effects. Ike et al. (2023a) used SVIM for the 

accurate critical buckling load analysis of EBBo2PEF with clamped-clamped ends. The SVIM was used to 

express the governing equations in iterative form as a system of algebraic equations. One-parameter polynomial 

shape function was constructed form fifth degree polynomial to satisfy the clamped-clamped boundary 

conditions and used in the SVIM to derive the buckling load for EBBo2PEF using the convergence criteria of 

the iteration. In their work, one parameter polynomial buckling shape function was found using fifth degree 

polynomial to satisfy clamped-clamped boundary conditions and utilized in the SVIM to derive the buckling 

load for EBB0WF using the convergence criteria of the iteration. Ike et al. (2023b) used SVIM for the accurate 

critical buckling load analysis of EBBoWF with clamped-clamped ends. Ikwueze et al. (2018) explored least 

squares weighted residual method (LSWRM) for the elastic buckling analysis of Euler column with one end 

clamped and the other end pinned, but failed to consider elastic foundation interaction effects. Mama et al. 

(2020) used fifth degree polynomial shape functions in the finite element method to find approximate solutions 

to the elastic buckling of EBBoWF. Ofondu et al. (2018) have explored the SVIM for the critical buckling load 

analysis of Euler columns with one end fixed and the other end pinned; but did not consider elastic foundation 

interaction effects. 

In this study the buckling analysis of Euler-Bernoulli beams resting on two-parameter elastic foundations is 

studied from fundamental principles. The governing differential equations of elastic stability (GDiES) for 

isotropic, homogenous, prismatic, linearly elastic beams resting on two-parameter elastic foundations is derived 

for the general case where there are transverse loads and where there is no transverse load. The GDiES is then 

solved in closed form such that boundary conditions and domain equations are satisfied. The classical method of 

trial functions is used to develop buckling solutions for TBo2PF with simply supported ends and clamped-

clamped ends. 

2. Framework of theory and formulation of governing domain equation of stability 
(GDES) 

2.1. Fundamental assumptions 

The assumptions are: 

(i) the beam material is linearly elastic, homogeneous and isotropic. 

(ii) transverse displacements are infinitesimally small in comparison with the beam depth. 

(iii) axial (longitudinal) strains are negligible. 

(iv) transverse normal strains and shear strains are insignificant, and neglected. 

(v) the planes of the cross-section remain plane and orthogonal to the longitudinal middle plane of the 

beam before and after deformation. This orthogonality hypothesis is called the Euler-Bernoulli 

hypothesis. 
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2.2. Formulation of governing differential equation of stability (GDiES) 

Figure 3 shows a typical beam on elastic foundation. Figure 4 depicts the free body diagram of an element of 

a beam resting on an elastic foundation. Figure 4 shows all the forces – internal forces, reaction forces and 

applied distributed transverse forces on the BoEF. 

 

 

Fig. 3 Buckling of beam on elastic foundation BoEF 

 

 

Fig. 4 Free body diagram of an element of a beam on Winkler foundation 

 

For equilibrium in the horizontal direction, 

 

( ) ( ) ( ) 0
ix

F P x P x P x= +  − =          (3) 

 

where 𝑃(𝑥) + 𝛥𝑃(𝑥) is the axial force on the right hand side of the section, and P(x) is the axial force on the left 

hand side of the section. 

 

Hence, ( ) 0P x =            (4) 

 

For equilibrium in the vertical direction, 

 

( ) ( ) ( ) ( ) ( ) 0
iv f

F Q x Q x Q x q x x r x x= +  − +  −  =       (5) 

 

Q(x) is the shear force on the left hand side, 𝑄(𝑥) + 𝛥𝑄(𝑥) is the shear force on the right hand side, rf(x) is the 

foundation reaction, q(x) is the transverse load intensity. 

Simplifying, 

 

( )( ) ( ) ( )
f

Q x r x q x x = −           (6) 

 

Dividing by 𝛥𝑥, and considering the limit as 𝛥𝑥 becomes infinitesimally small, Equation (6) becomes: 

0

( ) ( )
lim ( ) ( )

f
x

Q x dQ x
r x q x

x dx →


= = −


         (7) 
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For rotational equilibrium, taking moments about the left hand side of the section gives: 

 

( )
2

( )
( ) ( ) ( ) ( ) ( ) ( )

2
i

x
M M x M x M x Q x Q x x q x


= + − − +  − +   

      ( )
2

( )
( ) ( ) ( ) ( ) 0

2
f

x
r x P x P x w x


− +  =         (8) 

 

Simplifying Equation (8) and dividing by 𝛥𝑥, gives: 

 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) 0

2 2
f

M x w x x x w x
P x Q x Q x q x r x P x

x x x

    
− − − − + − =

  
                 (9) 

 

Further simplification of Equation (9) by considering that 𝛥𝑃(𝑥) = 0 from Equation (4) gives upon considering 

the limit as 𝛥𝑥 → 0, 
 

0

( ) ( ) ( ) ( )
lim ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0

2 2
f

x

M x w x x x dM x dw x
P x Q x Q x q x r x P x Q x

x x dx dx →

    
− − − − + = − − = 

  
                    …(10) 

 

Combining the three equations of equilibrium gives: 

 

( ) ( ) ( )
( ) ( ) ( )

f

dQ x d dM x dw x
P x r x q x

dx dx dx dx

 
= − = − 

 
      (11) 

 

Hence, the GDiES becomes: 

 

( ) ( )
( ) ( ) ( )

f

d dM x dw x
P x r x q x

dx dx dx

 
− = − 

 
       (12) 

 

The GDiES can be expressed in terms of w(x) using the Euler-Bernoulli theory EBT for thin beams in flexure. 

From EBT, M(x) is related to w(x) as: 

 
2

2

( )
( )

d w x
M x EI

dx
= −            (13) 

 

where E is the Young’s modulus, I is the moment of inertia. 

Then, the GDiES becomes: 

 

2 2

2 2

( ) ( )
( ) ( )

f

d d d w x d w x
EI P r x q x

dx dx dx dx

  
− − = −  
  

      (14) 

 

Simplifying, 

 
2 2 2

2 2 2

( ) ( )
( ) ( )

f

d d w x d d w x
EI P r x q x

dx dx dx dx

   
− − = −   
   

     (15) 
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Multiplying by (–1) gives: 

 
2 2 2

2 2 2

( ) ( )
( ) ( )

f

d d w x d d w x
EI P q x r x

dx dx dx dx

   
+ = −   

   
      (16) 

 

When the beam is homogeneous, and prismatic and the axial load P(x) is not a function of x, then the GDiES 

simplifies to the fourth order differential equation: 

 
4 2

4 2

( ) ( )
( ) ( )

f

d w x d w x
EI P q x r x

dx dx
+ = −        (17) 

 

For two-parameter foundations, Equation (2) is used in Equation (17). The GDiES for thin beam on two-

parameter foundation is: 

 
4 2 2

1 24 2 2
( ) ( )

d w d w d w
EI P k w x k q x

dx dx dx
+ + − =        (18) 

 

When there is no transverse force, q(x) = 0, and GDiES becomes homogeneous as follows: 

 
4 2

2 14 2
( ) ( ) 0

d w d w
EI P k k w x

dx dx
+ − + =        (19)  

 

3. Closed form solution method  

The paper seeks an exact solution to the problem that satisfies the GDiES at all points on the solution 

domain, and on the boundaries using the classical method of trial functions. The GDiES is divided by EI to 

have: 

 
4 2

2 1

4 2
( ) 0

d w P k d w k
w x

dx EI dx EI

− 
+ + = 
 

        (20) 

 

Let, 1 2
1 2

, ,
P k k

EI EI EI
 =  =  =          (21) 

 

2 1
( ) ( ) ( ) ( ) 0ivw x w x w x+ − + =          (22) 

 

where 

2 4

2 4

( ) ( )
( ) ; ( )ivd w x d w x

w x w x
dx dx

 = =         (23) 

 

By the method of trial functions, the solution for w(x) is sought in the form of an exponential function of the 

form: 

 

( )
sx

w x He=             (24) 

 

where s is a parameter to be determined and H is the amplitude of w(x), where H does not depend upon x. 
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If w(x) is the trial solution, the GDiES becomes: 

 
4 2

2 1
( ) 0sx sx sxs He s He He+ − + =         (25) 

 

Simplifying,  

 

( )4 2

2 1
( ) 0

sx
s s He+  − + =          (26) 

 

For meaningful solutions, 𝐻𝑒𝑠𝑥 = 𝑤(𝑥) ≠ 0  

The auxiliary equation for nontrivial solutions become: 

 
4 2

2 1
( ) 0s s+ − + =           (27) 

 

This is a quadratic equation in s2. The roots are: 

 

2

2 2 2 1
( ) ( ) 4

2
s

−  −   − − 
=                     (28a) 

 

Or, 

 

2

2 2 12
( ) 4( )

2 2
s

− − −  −
=                      (28b) 

 

2

2 2 2
1

2 2
s

  − −  = − − 
  
 

                    (28c) 

 
2 2

2 2

s A

s B

= −

= −
            (29) 

 

2

2 2 2
1

2 2
A

− − 
= − − 

 
                    (30a) 

 

2

2 2 2
1

2 2
B

− − 
= + − 

 
                   (30b) 

 

Then the four roots are: 

 

1,2

3,4

1

s Ai

i

s Bi

= 

= −

= 

            (31) 

 

The basis of linearly independent solution becomes: , , ,
Aix Aix Bix Bix

e e e e
− −
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Hence, the general solution is: 

 

1 2 3 4
( ) Aix Aix Bix Bixw x c e c e c e c e− −= + + +         (32) 

 

Using Euler’s formula, 

 

1 2 3 4
( ) (cos sin ) (cos sin ) (cos sin ) (cos sin )w x c Ax i Ax c Ax i Ax c Bx i Bx c Bx i Bx= + + − + + + −

                      …(33) 

 

Further simplification gives: 

 

1 2 3 4
( ) cos sin cos sinw x c Ax c Ax c Bx c Bx= + + +       (34) 

 

where 
1 1 2 2 1 2 3 3 4 4 3 4

, ( ), , ( )c c c c i c c c c c c i c c= + = − = + = −      (35) 

 

The constants c1, c2, c3 and c4 are dependent on the end support conditions of the problem. 

4. Results and discussion 

4.1. Case 1: Thin beam on 2 parameter foundation (TBo2PF) with simply supported ends 

The boundary conditions (BCs) are 

 

(0) 0, ( ) 0, (0) 0, ( ) 0w w l w w l = = = =         (36) 

 

Applying the BCs gives: 

 

1

2 2

2

3

2 2 2 2

4

1 0 1 0 0

0 0 0

cos sin cos sin 0

cos sin cos sin 0

c

cA B

cAl Al Bl Bl

cA Al A Al B Bl B Bl

    
    

− −     =
    
    

− − − −    

     (37) 

 

Solving, this reduces to: 

 

2

2 2

4

sin sin 0

sin sin 0

cAl Bl

cA Al B Bl

    
=    

− −    
        (38) 

 

For nontrivial solutions, the characteristic equation is: 

 

2 2

sin sin
0

sin sin

Al Bl

A Al B Bl
=

− −
         (39) 

 

Expanding the determinant, 

 
2 2

( )sin sin 0A B Al Bl− =           (40) 

 

Solving, sin 0Al =            (41) 
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1sin 0Al n−= =             (42) 

 

nA
l

=             (43) 

 

Or, 𝑠𝑖𝑛 𝐵 𝑙 = 0  

𝐵𝑙 = 𝑛𝜋  

𝐵 =
𝑛𝜋

𝑙
  

So, 

2 2

2 2 2
1

2 2

n
A

l

 − −     
= = − −     
     

       (44) 

 

2 2

2 2
1

2 2

n

l

 − −     
− = − −     

     
        (45) 

 

Squaring, 

 
22

2 2

2 2
1

2 2

n

l

   − −      − = − −                 

       (46) 

 

 
22

1
2 2( )

P l n

EI n l

  
 = =  + +  

  
         (47) 

 

 

22 4
2 21 1

2 22 2 2
( )

( ) ( )

l n EI l
P EI l n

n l l n

      
=  + + =  + +           

      (48) 

 

4 2

1 22
( , , )

n

EI
P K l l n

l
=             (49) 

 
2 4

4 2 22 1
1 2 2 4

( , , ) 1 ( )
( ) ( )

l l
K l l n n

n n

  
  = + +  

  
        (50) 

 

Identical results for Pn is obtained using the result for B. 

Equation (50) is used to calculate 𝐾(𝛽1𝑙4, 𝛽2𝑙2, 𝑛 = 1)  for previous work done by Soltani and Asgarin 

(2019). Table 1 illustrates the close agreement of present solution and the previous Soltani and Asgarin’s results, 

for β2l2 = 0, 2, 4, 6, 8 and β1l4 = 0, 20, 40, 60, 80.   

Table 2 presents 𝐾(𝛽1𝑙4, 𝛽2𝑙2, 𝑛 = 1)  for 𝛽1𝑙4 = 𝐾1 = 0,  1,  50,  100,  1000,  10,000  and 
𝛽2𝑙2

𝜋2 = 𝐾2 =

0,  0.5,  1,  2.5 for the present study and for previous studies by Taha (2014), Anghel and Mares (2019), Naidu 

and Rao (1995), and Ike (2023a, 2023c, 2024a, 2024b). Table 2 illustrates that present results are identical with 

previous results by Ike (2023a, 2024a, 2024b) and closely agree with results by Ike (2023c), Taha (2014), Naidu 
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and Rao (1995), and Anghel and Mares (2019). 

 

Table 1 – Critical buckling load coefficients of simply supported thin beam on two-parameter elastic 
foundation of Pasternak type 

Pasternak 

foundation 

parameter 
𝒌𝟐𝒍𝟐

𝑬𝑰
= 𝜷𝟐𝒍𝟐 

Winkler foundation parameter 
𝒌𝟏𝒍𝟒

𝑬𝑰
= 𝜷𝟏𝒍𝟒 

Present 

study 

Soltani 

& 

Asgarin 

(2019) 

Present 

study 

Soltani 

& 

Asgarin 

(2019) 

Present 

study 

Soltani 

& 

Asgarin 

(2019) 

Present 

study 

Soltani 

& 

Asgarin 

(2019) 

Present 

study 

Soltani 

& 

Asgarin 

(2019) 

0 0 20 20 40 40 60 60 80 80 

0 9.8696 9.8694 11.8960 11.8965 13.9225 13.9236 15.9489 15.9507 17.9753 17.9778 

2 11.8696 11.8694 13.8960 13.8965 15.9225 15.9236 17.9489 17.9507 19.9753 19.9778 

4 13.8696 13.8694 15.8960 15.8965 17.9225 17.9236 19.9489 19.9507 21.9753 21.9778 

6 15.8696 15.8694 17.8960 17.8965 19.9225 19.9236 21.9489 21.9507 23.9753 23.9778 

8 17.8696 17.8694 19.8960 19.8965 21.9225 21.9236 23.9489 23.9507 25.9753 25.9778 

 

Table 2 – Critical buckling load coefficients 𝑲(𝜷𝟏𝒍𝟒, 𝜷𝟐𝒍𝟐, 𝒏 = 𝟏) for TBo2PF with simply supported ends 

𝑲 = (
𝜷𝟐𝒍𝟐

𝝅𝟐 +
𝜷𝟏𝒍𝟒

𝝅𝟒 + 𝟏) 𝝅𝟐  

�̂�𝟏 �̂�𝟐 = 𝟎 

Taha 

(2014) 

Anghel and 

Mares (2019) 

Ike (2023a, 

2024a, 2024b) 

Ike (2023c) Naidu and 

Rao (1995) 

Present 

study 

0 9.8690 9.8678 9.8696 9.8696 9.8696 9.8696 

1   9.9709 9.9709 9.9709 9.9709 

50   14.9357 14.9357  14.9357 

100 20.0015 20.0000 20.0017 20.0017 20.002 20.0017 

1000   111.1908 111.1908  111.1908 

10,000   1,023.0814 1,023.0814  1,023.0814 

�̂�𝟏 𝐾2=0.5 

Taha 

(2014) 

Anghel and 

Mares (2019) 

Ike (2023a, 

2024a, 2024b) 

Ike (2023c) Naidu and 

Rao (1995) 

Present 

study 

0     14.804 14.8034 

1     14.907  

50       

100     24.937  

1000       

10,000       
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�̂�𝟏 𝐾2=1.0 

Taha 

(2014) 

Anghel and 

Mares (2019) 

Ike (2023a, 

2024a, 2024b) 

Ike (2023c) Naidu and 

Rao (1995) 

Present 

study 

0 19.7385 19.7376 19.7387 19.7520 19.739 19.7387 

1     19.841  

50       

100 29.8706 29.8695 29.8713 29.8827 29.871 29.8713 

1000       

10,000       

�̂�𝟏 �̂�𝟐 = 𝟐. 𝟓𝟎 

Taha 

(2014) 

Anghel and 

Mares (2019) 

Ike (2023a, 

2024a, 2024b) 

Ike (2023c) Naidu and 

Rao (1995) 

Present 

study 

0 34.5438 34.5415 34.5436 34.5564 34.544 34.5436 

1     34.645  

50       

100 44.6759 44.6732 44.6757 44.6871 44.676 44.6757 

1000       

10,000       

 

4.2. Case 2: Thin beam on 2 parameter foundation (TBo2PF) with clamped-clamped ends 

 

Fig. 5 Buckling of thin beam on 2 parameter foundation with clamped-clamped ends 

The BCs of clamped-clamped EBBo2PEF shown in Figure 5 are: 

 

(0) 0

(0) 0

( ) 0

( ) 0

w

w

w l

w l

=

 =

=

 =

            (51) 

 

Differentiating w(x) in Equation (34) with respect to x, gives: 

 

1 2 3 4
( ) sin cos sin cosw x c A Ax c A Ax c B Bx c B Bx = − + − +      (52) 

 

The boundary conditions give the homogeneous equations: 
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1

2

3

4

1 0 1 0 0

0 0 0

cos sin cos sin 0

sin cos sin cos 0

c

cA B

cAl Al Bl Bl

cA Al A Al B Bl B Bl

    
    
    =
    
    

− −    

      (53) 

 

Simplifying using, 4
1 3 2

,
c B

c c c
A

= − = −         (54) 

 

3

4

(cos cos ) sin sin 0

0
( sin sin ) (cos cos )

B cBl Al Bl Al
A

cA Al B Bl B Bl Al

    − −       =         − − 

      (55) 

 

For nontrivial solutions, the characteristic buckling equation is: 

 

sin sin
(cos cos )

0

( sin sin ) (cos cos )

A Bl B Bl
Bl Al

A

A Al B Bl B Bl Al

− 
−  

= 

− −

       (56) 

 

Expanding the determinant gives: 

 

2 sin sin
(cos cos ) ( sin sin ) 0

A Bl B Bl
B Bl Al A Al B Bl

A

− 
− − − = 

 
    (57) 

 

Further expansion, simplification and use of trigonometric identities yield the characteristic buckling equation 

as: 

 
2 2

2 (cos cos 1) ( )sin sin 0AB Al Bl A B Al Bl− + + =        (58) 

 

The eigenvalues are used to calculate critical buckling load coefficients for 𝐾1 =
𝑘1𝑙4

𝐸𝐼
= 0,  1,  50,  100 and 

𝐾2 =
𝑘2𝑙2

𝜋2𝐸𝐼
= 0,  0.50,  1.0 and 2.50; and presented in Table 3. 

Table 3 also depicts critical buckling load solutions by Rao and Raju (2002), Naidu and Rao (1995), and Ike 

(2024). Table 3 confirms that the present exact results are identical with previous results that used RVM, and 

FEM. 

Table 3 – Buckling load parameter (coefficients) of TBo2PF with clamped-clamped ends 

�̂�𝟏 =
𝒌𝟏𝒍𝟒

𝑬𝑰
 �̂�𝟐 =

𝒌𝟐𝒍𝟐

𝝅𝟐𝑬𝑰
= 𝟎 

Rao and Raju (2002) Naidu and Rao 

(1995) 

Ike (2024b) Present study 

0 39.478 39.479 39.4784176 39.4784176 

1 39.554 39.555 39.55440849 39.55440849 

50   43.27796199 43.27796199 

100 47.077 47.077 47.07750638 47.07750638 
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�̂�𝟏 =
𝒌𝟏𝒍𝟒

𝑬𝑰
 

�̂�𝟐 = 𝟎. 𝟓𝟎 

Rao and Raju (2002) Naidu and Rao 

(1995) 

Ike (2024b) Present study 

0 44.413 44.414 44.4132198 44.4132198 

1 44.489 44.490 44.48921069 44.48921069 

50   48.21276419 48.21276419 

100 52.012 51.942 52.01230858 52.01230858 

�̂�𝟏 =
𝒌𝟏𝒍𝟒

𝑬𝑰
 

�̂�𝟐 = 𝟏. 𝟎 

Rao and Raju (2002) Naidu and Rao 

(1995) 

Ike (2024b) Present study 

0 49.348 49.349 49.348022 49.348022 

1 44.424 44.425 44.424012 44.424012 

50   53.14756639 53.14756639 

100 56.9471 56.877 56.94711078 56.94711078 

�̂�𝟏 =
𝒌𝟏𝒍𝟒

𝑬𝑰
 

�̂�𝟐 = 𝟐. 𝟓𝟎 

Rao and Raju (2002) Naidu and Rao 

(1995) 

Ike (2024b) Present study 

0 64.152 64.153 64.15242861 64.15242861 

1 64.228 64.229 64.22841949 64.22841949 

50   67.95197299 67.95197299 

100 71.751 71.681 71.75151738 71.75151738 

 

5. Conclusion 

This study has investigated the buckling analysis of EBBo2PEF under inplane compressive loads. The 

differential equation of elastic stability was derived for the problem using the equilibrium method. The GDiES 

was found to be in general a nonhomogeneous equation with variable parameters when the beam is non-

prismatic and transverse distributed loads are present. 

For case of prismatic beam and absence of distributed transverse loading, the GDiES becomes a fourth order 

homogeneous equation in terms of the buckling deflection w(x). The work considered two cases of boundary 

conditions (BCs), namely: (i) EBBo2PEF with simple supports at x = 0, and x = l; (ii) EBBo2PEF with clamped 

supports at x = 0 and x = l 

In conclusion, 

(i) the critical buckling load coefficients for 𝐾1 = 0, 1, 50, 100, 1000, 10000 and  𝐾2 = 0, 0.5, 1, 2.5 

for EBBo2PEF with simply supported ends are found to be identical with previous results for the 

same foundation beam parameters by Ike (2023a, 2024a, 2024b) and Naidu and Rao (1995), and 

agrees with solution by Anghel and Mares (2019). 

(ii) the expression for buckling load coefficient was found to depend upon the buckling mode number, 

and the two parameters of the elastic foundation. 

(iii) the least buckling load corresponds to the first buckling mode, n = 1, and is the critical buckling 

load. 

(iv) for EBBo2PEFs with clamped-clamped ends, the critical buckling load coefficients for 𝐾1 =
0, 1, 100; 𝐾2 = 0, 0.5, 1, 2.5 are identical with previous solutions by Ike (2024b) and agree closely 

with past solutions by Rao and Raju (2002), and Naidu and Rao (1995). 
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Notations / Symbol / Nomenclature 

x  longitudinal (axial) coordinate 

y  coordinate for the direction of width 

z  transverse coordinate 

P  axial load 

Q(x)  shear force distribution 

M(x)  bending moment distribution 

rf  reaction of foundation on the beam 

    change in 

    sum of, summation 

q(x)  applied transverse load distribution intensity 

lim, Lt   limit of 
→    tends to  

E   Young’s modulus 

I  moment of inertia 

u(x)  displacement in x direction 

w(x)  transverse displacement in the z direction 

v(x)  displacement in y direction 

k1, k2  foundation parameters of the two-parameter elastic foundation 

    parameter defined in terms of P and EI 

1
    parameter defined in terms k1 and EI 

2
    parameter defined in terms k2 and EI 

𝑑

𝑑𝑥
   first ordinary differential coefficient with respect to x 

𝑑𝑛

𝑑𝑥𝑛   nth ordinary differential coefficient with respect to x 

H amplitude of trial function 

s  unknown parameter of the exponential trial function 

A, and B  eigenvalues defined in terms of 
1

,   and 
2

   

i  imaginary number / complex number 

�̄�1, �̄�2, �̄�3, �̄�4  constants of integration 

c1, c2, c3, c4 modified constants of integration 

l  span of beam, length of beam 

n  buckling mode number 

𝐾(𝛽1𝑙4, 𝛽2𝑙2, 𝑛)  buckling load coefficient (parameter) 

𝐾1  modified parameter defined in terms of k1, l and EI 

𝐾2   modified parameter defined in terms of k2, l and EI 

BCs  boundary condition(s) 

GDES  governing domain equation of stability 

GDiES  governing differential equation of stability 

EBT  Euler-Bernoulli theory 

FG  functionally graded 

FGM  functionally graded material 

RDM  recursive differentiation method 

FEM  finite element method 

FSTM  finite sine transformation method 

PCM  point collocation method 

SVIM  Stodola-Vianello iteration method 

GITM  generalized integral transformation method 

EBBoWF Euler-Bernoulli beam on Winkler foundation 

EBBoPF  Euler-Bernoulli beam on Pasternak foundation 

EBBo2PEFs Euler-Bernoulli beam on two parameter elastic foundations 
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PSIM  Picard’s successive iteration methodology 
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