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ABSTRACT: In this paper, artificial neural networks (ANNs) are used in 
attempt to obtain the strength of polymer-modified concrete (PMC). A database 
of 36 case records is used to develop and verify the ANN models. Four 
parameters are considered to have the most significant impact on the magnitude 
of (PMC) strength and are thus used as the model inputs. These include the 
Polymer/cement ratio, sand/cement ratio, gravel/cement ratio, and water/ cement 
ratio. The model output is the strength of (PMC). Multi-layer perceptron trained 
using the back-propagation algorithm is used. In this work, the feasibility of 
ANN technique for modeling the concrete strength is investigated. A number of 
issues in relation to ANN construction such as the effect of ANN geometry and 
internal parameters on the performance of ANN models are investigated. Design 
charts for prediction of polymer modified concrete strength are generated based 
on ANN model. It was found that ANNs have the ability to predict the strength 
of polymer modified concrete, with a very good degree of accuracy. The ANN 
models developed to study the impact of the internal network parameters on 
model performance indicate that ANN performance is reality insensitive to the 
number of hidden layer nodes, momentum terms or transfer functions. On the 
other hand, the impact of the learning rate on model predictions is more 
pronounced. 

 
keywords:; Artificial Neural networks; Strength; Polymer Modified Concrete; 

Modeling. 
 

 الخلاصة
لايجـاد  لبحث، جرى استخدام الشبكات العصبية الاصطناعية في محاولة لإيجاد نماذج دقيقـة           في هذا ا  

 لبنـاء واثبـات   36تم استخدام قاعدة بيانات شملت ما مجموعـه       .مقاومة الخرسانة المطورة بالبوليمر   
ت التـأثير    التالية يمكن اعتبارها من العوامل ذا      الاربعةالعوامل  . نماذج الشبكات العصبية الاصطناعية   

نسبة البـوليمر   وقد اعتبرت كمعطيات للنموذج وتشمل    مقاومة الخرسانة المطورة بالبوليمر   الأكبر على   
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، في حـين    ونسبة الماء الى السمنت     ،نسبة الحصى الى السمنت   ،  نسبة الرمل الى السمنت   ،  الى السمنت 
كات المتعددة الطبقـات بتقنيـة      في هذا العمل تم استخدام الشب      . هو نتيجة النموذج   مقاومة الخرسانة إن  

 ـ. مقاومة الخرسانة المطورة بالبوليمرالانتشار الرجعي للخطأ لنمذجة      دراسـة العديـد مـن    ت وقد تم
الحالات التي لها علاقة ببناء الشبكات العصبية الاصطناعية منها معمارية الشبكة والعوامل الداخلية لها              

 لحسـاب   اشـكال تصـميمية   ة الاصطناعية، ووضعت    ومدى تأثيرها على أداء نماذج الشبكات العصبي      
لقد وجد بان الشبكات العصبية الاصطناعية لها القابلية على إيجاد          . مقاومة الخرسانة المطورة بالبوليمر   
كما أن النماذج التي تم بناءها لدراسـة        . من الدقة  جيدة جداً     بدرجة مقاومة الخرسانة المطورة بالبوليمر   

 للشبكات على أداءها أظهرت أن أداء الشبكات غير حساس لعدد العقد في الطبقة              تأثير العوامل الداخلية  
المخفية، للحد الكمي و لمعادلات النقل في المقابل فأن تأثير معدل التعلم اكثر وضـوحاً علـى نتـائج                   

 .التوقعات
1. INTRODUCTION  

Most research in material modeling aims to construct mathematical models to 
describe the relationship between components and material behavior. These 
models consist of mathematical rules and expressions that capture these varied 
and complex behaviors. Concrete is a highly nonlinear material, so modeling its 
behavior is a difficult task. Artificial neural networks are a family of massively 
parallel architectures that solve difficult problems via the cooperation of highly 
interconnected but simple computing elements (or artificial neurons). Basically, 
the processing elements of a neural network are similar to neurons in the brain, 
which consist of many simple computational elements arranged in layers. 
Interest in neural networks has expanded rapidly in recent years. Much of the 
success of neural networks is due to such characteristics as nonlinear processing 
and parallel processing. In the past decade, considerable attention has been 
focused on the problem of applying neural networks in diverse fields, such as 
system modeling, fault diagnosis, and control. This is because neural networks 
offer the advantages of performance improvement through learning by using 
parallel processing. The neural network’s performance can be measured by the 
speed of learning (efficiency) and generalization capability (accuracy) of these 
networks. The speed of learning can be expressed either as CPU time or as the 
number of epochs required for convergence of the network and thus can form 
the basis for comparison. There is at present no formal definition of what it 
means to generalize correctly, but the generalization capability of the network 
may be assessed based on how well it performs on the test data set. The back-
propagation algorithm is now recognized as a powerful tool in many neural-
network applications. Most applications of neural networks are based on the 
back-propagation paradigm, which uses the gradient-descent method to 
minimize the error function (1,2,3). In civil engineering, the methodology has been 
successfully applied to a number of areas. Some typical applications in civil 
engineering include structural analysis and design (4,5), structural damage 
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assessment (6,7), structural control (8,9), seismic liquefaction prediction (10), 
constitutive modeling (11,12), compaction characterization (13), geotechnical 

engineering (14,15,16) and river flow prediction (17). 
 

In the area of material modeling, Ghaboussi et al. (11) modeled the behavior of 
concrete in the state of plane stress under monotonic biaxial loading and 
compressive uniaxial cycle loading with a back-propagation neural network. 
Their results look very promising. Brown et al.(18) demonstrated the applicability 
of neural networks to composite material characterization. In their approach, a 
back-propagation neural network had been trained to accurately predict 
composite thermal and properties when provided with basic information 
concerning the environment, constituent materials, and component ratios used in 
the creation of the composite. Kasperkiewicz et al.(19) demonstrated that the 
fuzzy-ARTMAP neural network can model strength properties of high-
performance concrete mixes and optimize the concrete mixes. Yeh(20) 
demonstrated that a novel neural network architecture, augment-neuron network 
can improve the performance of these networks for modeling concrete strength 
significantly. A back-propagation neural network consists of a number of 
interconnected processing elements (artificial neurons). The elements are 
logically arranged into two or more layers, and interact with each other via 
weighted connections. These scalar weights determine the nature and strength of 
the influence between the interconnected elements. Each element is connected to 
all the neurons in the next layer. There is an input layer where data are presented 
to the neural network, and an output layer that holds the response of the network 
to the input. It is the intermediate layers (hidden layers) that enable these 
networks to represent the interaction between inputs as well as nonlinear 
property between inputs and outputs. Traditionally, the learning process is used 
to determine proper interconnection weights, and the network is trained to make 
proper associations between the inputs and their corresponding outputs. Once 
trained, the network provides rapid mapping of a given input into the desired 

output quantities. 
 

The basic strategy for developing a neural-based model of material behavior 
is to train a neural network on the results of a series of experiments on material. 
If the experimental results contain the relevant information about the material 
behavior, then the trained neural network would contain sufficient information 
about the material behavior to qualify as a material model. Such a trained neural 
network not only would be able to reproduce the experimental results it was 
trained on, but through its generalization capability should be able to 

approximate the results of other experiments(11). 
 

2. POLYMER MODIFICATION FOR CONCRTE  
n Polymer Portland Cement Concrete (PPCC) 
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ACI Manual of Concrete Practice Part 5-1990(21) defines Polymer Portland 
Cement Concrete (PPCC) mixtures as normal Portland Cement Concrete to 
which a water soluble or emulsified polymer has been added during the mixing 
process. As the concrete cures, hardening of polymer also occurs, forming a 

continuous matrix of polymer throughout the concrete.  
 

n Polymer Modification for Mortar and Concrete  
The use of polymer modification for cement mortar and concrete is not new. 
In 1923 using polymers “as an admixture” which consists of polymeric 
compounds to improve properties such as strength, modulus of elasticity, water 
proof, durability of cement mortar and concrete was a patent issued to 
“Cresson”(22), this patent refers to paving material with natural rubber latexes 

and cement was used as filler.  
 

In Japan, polymer modified mortar is most widely used as a construction 
material for finishing and repairing works, but polymer modified concrete 
(PMC) is seldom used because of its poor cost – performance balance, however, 
the PMC is widely used for bridge deck overlays and patching work in U.S.A; 
for example 1.2 million m2 of bridge decks are overlaid with polymer modified 

concrete (PMC) (23) . 
 

In the last decade, about 60300m3 of PMC has been placed each year on both 
new and existing deteriorated concrete structures in U.S.A.(23) . 

 
To produce polymer-modified mortar and concrete, mostly polymers in 
dispersion (latex or emulsion) form are added to ordinary cement mortar and 
concrete during mixing. Polymer-modified mortar and concrete have 
considerable attraction because their process technology is very similar to that of 
ordinary cement mortar and concrete. Fig.(1) represents the classification of 
polymeric admixtures or modifiers for polymer-modified mortar and concrete. 
The polymer dispersions widely used are styrene-butadiene rubber (SBR) latex, 
ethylene-vinyl acetate (EVA), and polyacrylic ester (PAE) emulsion in Japan 
and Europe, and the styrene-butadiene rubber latex, polyacrylic ester emulsion, 
and epoxy (EP) resin in the United States. Annual consumption of the polymer 
dispersions in Japan has exceeded 100,000 tons in recent years. In Japan and 
Europe, the epoxy resin is rarely used as a polymeric admixture because it is 
more expensive than latex or emulsion polymers. In Europe, Japan, and the 
United States, redispersible polymer powders are produced by spray-drying 
polymer dispersions such as ethylene-vinyl acetate and vinyl acetate-vinyl 
carboxylate emulsions, and often employed for the same purpose as polymer 

dispersions.  
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n Principles of Polymer Modification 
Although polymer-based admixtures in any form such as polymer latexes, 
water-soluble polymers and liquid polymers are used in cementitious composites 
such are mortar and concrete. It is very important that both cement hydration 
and polymer film formation (coalescence of polymer particles and the 
polymerization of resins) proceeds well to yield a monolithic matrix phase with 
network structure in which the cement hydrate phase and polymer phase 
interpenetrate. In polymer-modified mortar and concrete structures, aggregates 
are bound by such co-matrix phase, resulting in superior properties compared 

with conventional cementitious composite (24).  
 

Polymer latex modification of cement mortar and concrete is governed by 
both cement hydration and polymer film formation. The cement hydration 
process generally precedes the polymer film formation process by the 
coalescence of polymer particles in polymer latexes (24,25). In due course both 
cement hydration and polymer film formation processes form a co-matrix phase. 
The co–matrix phase is generally formed according to the simplified model 
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Fig.(1):System and Classification of Concrete-Polymer Composites.(4) 
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given by Ohama (24), and integrated model by Beeldens, et al. (25) , shown in fig 
(2). Some chemical reactions happen between polymer and cement hydration 

that lead to improve the bond between cement hydrates and aggregates (24). 
 

 
(a) Immediately after mixing 

  
(b) Partial deposit of polymer particles, cement hydration, film 

formation 
                    

 

 
(c) Cement hydration proceeds, polymer film formation starts on 

specific spots 

                        
(d) Cement hydration continuous, the polymer particles coalesce 

into a continuous film 
 
 

n Styrene Butadiene Rubber (SBR) Polymer Modified Concrete  
SBR Polymer is the most widely used in concrete. Fig. (3), shows the 

chemical structure of Styrene butadiene Rubber latexes.Co-polymers of butidine 

Fig.(2): Integrated model of structure formation (25). 
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with styrene (styrene-butadine rubber (SBR)), are a group of large-volume 
synthetic rubbers(26). High adhesion occurs between the polymer films that form 
and cement hydrates. This action gives less strain compared to ordinary concrete 
and improves the properties of concrete such as flexural and compressive 
strength and gives also a higher durability (23) . 

 
 

 
 
Qusay Abdulhameed Jabal Al-Atiyah(27) added styrene butadiene rubber 
(SBR) polymer as a ratio of cement content to no-fines concrete in his research 
to study the effect of SBR polymer on stress-strain relationship of no-fines 
concrete under compression . That research also includes studying the effect of 
polymer/cement (P/C) ratio on properties like density, compressive strength and 

modulus of elasticity. 
 

        The concrete mixes by weight were (1:7), (1:6), (1:5), and (1:4) 
cement/aggregate (C/A). The polymer was added as percentages of cement 
weight and the ratios of the polymer were (5%), (7.5%), and (10%). Reference 

mixes of (0%) polymer were made for every case. 
 

        Styrene Butadiene Rubber ((SBR) polymer) improved the compressive 
strength and made this type of concrete (no-fines concrete) less strained than 
that in reference mixes. It increased the compressive strength in mixes such as 
(1:4) C/A mixes from (23.6) MPa to (34.1) MPa when P/C ratio increased from 

(0%) to (10%), with percentage of increase of (44%). 
 

The area under stress-strain curves was found in polymer concrete mixes 
to be greater than reference mixes and also the area under curves was increased 
with P/C ratios. Also, the increase in the modulus of elasticity for air-curing  
was about 61% for (1:7) C/A mixes and 4% for (1:4) mixes when P/C changes 

from 0% to 10%. 
 

        The suitability of no-fines concrete to be used in structural members has 
been affirmed in that research especially for (1:4), and (1:5) C/A polymer mixes. 

 

Fig.(3) Chemical structures of SBR polymer latexes ( 26) 
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        A new mathematical model suggested for both ascending and descending 
portions is presented in that research and discussed.  

Several investigators (28,29) studied the influence of the ratio of 
polymer/cement (P/C). J. . Sauer, and Cook (30), studied the effect of (P/C) ratio 
on compressive and tensile strength of polymer cement concrete. It should be 
noted also that in all cases, polymer content greater than 18% does not give 
additional increase in compressive strength, flexural strength and also modulus 

of rupture (M.O.R)(31,32). 
3. DEVLOPMENT of Neural Network Model 
The steps for developing ANN models, as outlined by Maier and Dandy (33), 
are used as a guide in this work. These include the determination of model 
inputs and outputs, division and preprocessing of the available data, the 
determination of appropriate network architecture, optimization of the 
connection weights training, stopping criteria, and model validation. The 
personal computer-based software NEUFRAME Version 4.0 2000 
Neurosciences Corp., Southampton, Hampshire, U.K. is used to simulate ANN 
operation in this work. The data used to calibrate and validate the neural 
network model were obtained from the literature and include experimental 
measurements of concrete strength as well as the corresponding information 
regarding the mixtures. The data cover a range of variation in polymer cement 
ratio, sand/cement ratio, gravel/cement ration and water/cement ratio. The 
database comprises a total of 36 individual cases; 8 cases were reported by Al-
Hadithi(34) 8 cases by Al-Kubaisy(35) 4 cases by Al-Omer(36) 6 cases by Al-

Hadithi(37) 6 cases by Bentur(32) and 4 cases by Al-Gassani(38). 
 

n Model Inputs and Outputs 
A thorough understanding of the factors affecting strength of polymer 
modified-concrete is needed in order to obtain accurate strength prediction. 
Most traditional works include, as the main factors affecting modified – concert 
strength, (Polymer/cement ratio, fine aggregate (sand/cement ratio), coarse 
aggregate (gravel/cement ratio), water/cement ratio, quantity of water, 
maximum grain size, and age of testing). There are insufficient data for the 
maximum grain size and quantity of water added while the age of testing is 28 
days, and thus these data are not included in the input data. Consequently, four 
parameters are considered to have the most significant impact on the magnitude 
of (PMC) strength and are thus used as the model inputs. These include the 
Polymer/cement ratio (P/C), sand/cement ratio (S/C), gravel/cement ratio (G/C), 
and water/ cement ratio (W/C), concrete strength is the output. The data ranges 

used for the ANN model are given in Table (1). 
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Table(1) Data ranges used for ANN model variables 
Model variables Minimum 

value 
Maximum 

value 
Polymer/cement ratio, (P/C 

%) 
0 30% 

Sand/Cement ratio, (S/C) 1.19 2.5 
Gravel/Cement ratio, (G/C) 0 4.1 
Water/Cement ratio, (W/C) 0.2 0.6 
Compressive Strength, (Fc) 

MPa 
9.6 69.6 

 
n Data Division and Preprocessing 
It is common practice to divide the available data into two subsets; a training 
set, to construct the neural network model, and an independent validation set to 
estimate model performance in the deployed environment(39).  However, 
dividing the data into only two subsets may lead to model overfitting. As a 
result, and as discussed later, crossvalidation (40) is used as the stopping criterion 
in this study and, consequently, the database is divided into three sets: training, 
testing, and validation. Recent studies have found that the way the data are 
divided can have a significant impact on the results obtained (41). Shahin et. al.(42) 
investigated four data division methods, they are random data division, data 
division to ensure statistical consistency of the subsets needed for ANN model 
development, data division using self-organizing maps (SOMs) and a new data 
division method using fuzzy clustering. The results indicate that the statistical 
properties of the data in the training, testing, and validation sets need to be taken 
into account to ensure that optimal model performance is achieved. It is also 
apparent from the results that SOM and fuzzy clustering methods are suitable 
approaches for data division. Consequently, the database is divided into three 
sets: training, testing, and validation using SOM technique, in which the inputs 
Polymer/cement ratio (P/C), sand/cement ratio (S/C), gravel/cement ratio (G/C), 
and water/ cement ratio (W/C),and corresponding output concrete strength (Fc) 
of the predictive model are presented to the SOM as inputs. There is no precise 
rule for determining the optimum size of the map. Consequently, a number of 
map size are investigated, including 3x3, 4x4, 5x5, 6x6. for all map sizes, the 
default parameters (e.g., learning rate and neighborhood size) suggested in the 
software package are used, and training is continued for 10,000 iterations. A 
grid size of 5x5 is chosen, as it ensures that the maximum number of clusters are 
found from the training data (43). It is essential that the data used for training, 
testing, and validation represent the same population (44). Table (2) shows the 
statistical parameters for the input and output of the artificial neural network 

model. 
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Table (2) Input and output statistics for the ANN model  
Input Variables Output 

Data set 

Statistic
al 

paramet
ers 

P/C % (S/C) (G/C) W/C Fc, 
MPa 

maximu
m 30 2.5 4.1 0.6 68.53 

minimu
m 0 1.19 0 0.2 10.3 

mean 5.06 1.67 2.25 0.37 40.75 
Std.dv. 7.55 0.47 1.33 0.10 18.08 

Trainin
g 

n = 17 

range 30 1.31 4.1 0.4 58.23 
maximu

m 24 2.5 4.1 0.6 65.15 
minimu

m 0 1.2 0 0.3 9.6 
mean 4.67 1.71 2.47 0.39 37.76 

Std.dv. 6.33 0.47 1.43 0.09 19.71 

Testing 
n = 12 

 

range 24 1.3 4.1 0.3 55.55 
maximu

m 18 2.5 4.1 0.54 69.6 
minimu

m 0 1.2 0 0.3 29 
mean 6.43 1.56 2.39 0.40 46.77 

Std.dv. 5.65 0.43 1.41 0.10 16.10 

Validati
on 

n = 7 

range 18 1.3 4.1 0.24 40.6 
 
 
 

To examine how representative the training, testing and validation sets are with 
respect to each other t-test and F-test are carried out. The t-test examines the null 
hypothesis of no difference in the means of two data sets and the F-test 
examines the null hypothesis of no difference in the variances of the two sets. 
For a given level of significance, test statistics can be calculated to test the null 
hypotheses for the t-test and F-test respectively. Traditionally, a level of 
significance equal to 0.05 is selected. Consequently, this level of significance is 
used in this research. This means that there is a confidence level of 95% that the 
training, testing and validation sets are statistically consistent. The results of the 
t-test and F-tests are given in Table (3).These results indicate that training, 

testing and validation sets are generally representative of a single population. 
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Table (3) Null hypothesis tests for the ANN input and output variables 

Variable 
And 

Data sets 

t-
value 

Lowe
r 

critic
al 

value 

Uppe
r 

critic
al 

value 

t-test F-
value 

Lower 
critica
l value 

Upper 
critica

l 
value 

F-
test 

Polymer/cement ratio, (P/C %) 

Testing 0.43 -2.05 2.05 Acce
pt 1.42 0.34 3.30 Acce

pt 
Validatio

n -1.38 -2.07 2.07 Acce
pt 1.79 0.30 5.24 Acce

pt 
Sand/Cement ratio, (S/C) 

Testing -0.66 -2.05 2.05 Acce
pt 1.02 0.34 3.30 Acce

pt  
Validatio

n 1.69 -2.07 2.07 Acce
pt 1.23 0.30 5.24 Acce

pt 
Gravel/Cement ratio, (G/C) 

Testing -1.29 -2.05 2.05 Acce
pt 0.87 0.34 3.30 Acce

pt 
Validatio

n -0.77 -2.07 2.07 Acce
pt 0.89 0.30 5.24 Acce

pt 
Water/Cement ratio, (W/C) 

Testing -1.55 -2.05 2.05 Acce
pt 1.11 0.34 3.30 Acce

pt 
Validatio

n -2.05 -2.07 2.07 Acce
pt 0.92 0.30 5.24 Acce

pt 
Compressive Strength, (Fc) MPa 

Testing 1.26 -2.05 2.05 Acce
pt 0.84 0.34 3.30 Acce

pt 
Validatio

n -2.45 -2.07 2.07 Rejec
t  1.26 0.30 5.24 Acce

pt 
 

Once the available data have been divided into their subsets, it is important to 
preprocess the data to a suitable form before they are applied to the ANN. 
Preprocessing the data by scaling them is important to ensure that all variables 
receive equal attentions during training. In this work, the input and output 

variables are scaled between 0 and 1.0, using the following equation:  
             

 
minmax

min
n xx

xxx
−

−
=………………………………………………………(1) 
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n Model Architecture 
Determining the network architecture is one of the most important and difficult 
tasks in the development of ANN models. It requires the selection of the number 
of hidden layers and the number of nodes in each of these. It has been shown 
that a network with one hidden layer can approximate any continuous function, 
provided that sufficient connection weights are used (45). Consequently, one 
hidden layer is used in this study. The number of nodes in the input and output 
layers are restricted by the number of model inputs and outputs. The input layer 
of the ANN model developed in this work has four nodes, one for each of the 
model inputs [i.e., Polymer/cement ratio (P/C), sand/cement ratio (S/C), 
gravel/cement ratio (G/C), and water/ cement ratio (W/C)]. The output layer has 
only one node representing the measured value of concrete strength (Fc). In 
order to obtain the optimum number of hidden layer nodes, it is important to 
strike a balance between having sufficient free parameters (weights) to enable 
representation of the function to be approximated, and not having too many so 
as to avoid over-training and to ensure that the relationship determined by the 
ANN can be interpreted in a physical sense. Overtraining is not an issue in this 
study, as crossvalidation is used as the stopping criterion. However, as just 
discussed, physical interpretation of the connection weights is important, and 
hence the smallest network that is able to map the desired relationship should be 
used. In order to determine the optimum network geometry, ANNs with one, 
two, three, four, five, six, seven, eight and nine hidden layer nodes are trained. It 
should be noted that 9 is the upper limit for the number of hidden layer nodes 
needed to map any continuous function for a network with four inputs, as 

discussed by Caudill (46). 
 

n Weight Optimization (Training) 
The process of optimizing the connection weights is known as ‘‘training’’ or 
‘‘learning.’’. This is equivalent to the parameter estimation phase in 
conventional statistical models. The aim is to find a global solution to what is 
typically a highly nonlinear optimization problem. A feed-forward networks are 
used. The method most commonly used for finding the optimum weight 
combination for feed-forward neural networks is the back-propagation algorithm 
(1), which is based on first-order gradient descent. Details of the back-
propagation algorithm are beyond the scope of this paper and can be found in 
many publications e.g. (47). In this study, the general strategy adopted for finding 

the optimal parameters that control the training process is as follows. 
For each trial number of hidden layer nodes, random initial weights and biases 
are generated. The neural network is then trained with different combinations of 
momentum terms and learning rates in an attempt to identify the ANN model 
that performs best on the testing data. The momentum terms used in this study 
are 0.005, 0.01, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 0.95 and 0.99, whereas the learning 
rates used are 0.05, 0.1, 0.15, 0.2, 0.4, 0.6, 0.8, 0.9 and 0.95. Since the back-
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propagation training algorithm uses a first-order gradient descent technique to 
adjust the connection weights, it may get trapped in a local minimum if the 
initial starting point in weight space is unfavorable. Consequently, the model 
that has the optimum momentum term and learning rate is retrained a number of 
times with different initial weights and biases until no further improvement 

occurs. 
 

n Stopping Criteria 
Stopping criteria are those used to decide when to stop the training process. 
They determine whether the model has been optimally or sub-optimally trained. 
As described earlier, the crossvalidation technique (40) is used in this work as the 
stopping criterion, as it is considered to be the most valuable tool to ensure that 
overfitting does not occur (48). The training set is used to adjust the connection 
weights. The testing set measures the ability of the model to generalize, and the 
performance of the model using this set is checked at many stages of the training 
process, and training is stopped when the error of the testing set starts to 
increase. The testing set is also used to determine the optimum number of 
hidden layer nodes and the optimum internal parameters (learning rate, 

momentum, and initial weights). 
 

n Model Validation 
Once the training phase of the model has been successfully accomplished, the 
performance of the trained model is validated using the validation data, which 
have not been used as part of the model building process. The purpose of the 
model validation phase is to ensure that the model has the ability to generalize 
within the limits set by the training data, rather than simply having memorized 
the input–output relationships that are contained in the training data. The 
coefficient of correlation (r), the root-mean-square error RMSE), and the mean 
absolute error (MAE) are the main criteria that are used to evaluate the 
performance of the ANN models developed in this work. The coefficient of 
correlation is a measure that is used to determine the relative correlation and the 
goodness-of-fit between the predicted and observed data. The RMSE is the most 
popular measure of error and has the advantage that large errors receive greater 
attention than smaller ones (49). In contrast, the MAE eliminates the emphasis 
given to large errors. Both RMSE and MAE are desirable when the data 

evaluated are smooth or continuous (39). 
 

4. Results and Discussion 
The impact of the number of hidden nodes on ANN performance is shown in 
Fig. 4. it can be seen that the number of hidden layer nodes has little impact on 
the predictive ability of the ANN. Fig. 1 shows that the network with two hidden 

layer nodes has the lowest prediction error.  
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Fig. 4. Performance of artificial neural network models with different 
hidden layer nodes (learning rate=0.2 and momentum term=0.8) 

 
The effect of the internal parameters controlling the back-propagation algorithm 
(i.e., momentum term and learning rate) on model performance is shown in Figs. 
5 and 6, respectively. It can be seen from Fig. 5 that the performance of the 
ANN model is relatively insensitive to momentum, particularly in the range 
0.01–0.6. The best prediction was obtained with a momentum value of 0.8. Fig. 

6 shows that the optimum learning rate was found to be 0.2.  
 

The predictive performance of the optimal neural network model (i.e., two 
hidden layer nodes, momentum value of 0.8, and learning rate of 0.2) is 
summarized in Table 4. The results indicate that the ANN model performs well, 
with an r of 0.81, an RMSE of 6.87 Mpa, and an MSE of 6.13 MPafor the 
validation set. Table 4 also shows that the results obtained for the model during 
validation are generally consistent with those obtained during training and 
testing, indicating that the model is able to generalize within the range of the 
data used for training. The effect of using different  transfer functions  is shown  
in Table 5. It  can  be  seen  that  the  better performance is obtained when the 
tanh transfer function is used for the hidden layer and the sigmoid transfer 

function is used for the output layer.  
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Fig.5  Effect of various 
momentum terms on 
artificial neural network 
performance (hidden nodes 
= two and learning rate = 

0.2) 

 Fig. 6 Effect of various learning 
rates on artificial neural 
network performance (hidden 
nodes = two and momentum 

term = 0.8) 

 
Table (4) Artificial Neural Network Results 

Data set r RMSE (MPa) MAE (MPa) 
Training 0.89 5.65 4.30 
Testing 0.87 6.43 4.43 

Validation 0.81 6.87 6.13 
 

TABLE (5) PERFORMANCE OF ANN MODELS DEVELOPED 
(NO. OF HIDDEN NODES = 2, LEARNING RATE = 0.2, MOMENTUM 

TERM = 0.8) 
Performance measures 

Correlation 
coefficient, r RMSE (MPa) MAE (MPa) 

Transfe
r 

function 
in 

hidden 
layer 

Transf
er 

functio
n in 

output 
layer 

T S V T S V T S V 

Tanh Sigmoi
d 0.89 0.87 0.81 5.65 6.43 6.87 4.30 4.43 6.13 

Sigmoid Sigmoi
d 0.80 0.86 0.69 39.9

9 
39.8

1 
45.5

2 
35.0

7 
35.1

4 
44.1

1 

Tanh Tanh 0.47 0.40 0.39 39.6
5 

43.4
8 

33.7
3 

34.7
7 

39.2
1 

30.2
6 
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Sigmoid Tanh 0.80 0.86 0.69 110.
78 

112.
25 

120.
58 

106.
17 

110.
65 

119.
66 

                                                                                                                                                               
T = Training, S = Testing, and V = Validation 

 
Comparisons of the results obtained using the ANN and the measured values of 
compressive strength are presented in Fig. 7, which shows that the ANN model 

performs reasonably for all data used in this work. 
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Fig. 7 Measured versus predicted compressive strength for ANN model  

 
In  order  to  facilitate  the  ANN  technique  for  compressive strength  
prediction  of  polymer modified – concrete ,  the  information  obtained  from  
the  ANN model  is translated into a set of design charts suitable for practical 
use in order to avoid computer or hard calculations.  This is carried out by 
entering synthetic data into the trained ANN model such that the synthetic data 
lie within the ranges of the data used during the ANN model  development.   A  

series  of  design  charts  are  generated  and  are  shown  in Figure 8. 
 

5. CONCLUSIONS 
Concrete is a highly nonlinear material, so modeling its behavior is a difficult 
task. An artificial neural network is a good tool to model nonlinear systems. The 
results indicate that back – propagation neural networks have the ability to 
predict the compressive strength of polymer modified concrete with an 
acceptable degree of accuracy. The predictions obtained using the ANN model 
were relatively insensitive to the number of hidden layer nodes and the 
momentum term. The impact of learning rate on model predictions was more 
pronounced. The optimum network geometry was found to be 4-2-1 (i.e. four 

R2 = 0.72 
No. of data= 36 
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inputs, two hidden layer nodes, and one output node), optimum momentum term 
value was found to be 0.8, and the optimum learning rate was found to be 0.2. 

 
ANNs have the advantage that once the model is trained, it can be used as an 
accurate and quick tool for estimating the compressive strength without a need 

to perform any manual work. 
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Fig.8 Illustrative set of design charts based on the ANN model 
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Fig.8 Illustrative set of design charts based on the ANN model (continued) 
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