IJCE-12t ISSUE September-2008

Development of Computer Program to determine Runway Length Required
for Airport Design

By

Dr. Mehdi I. AL-Kubaisi
Department of Civil Engineering-College of Engineering-University of Anbar

dadal)

gl gal¥ Csthal Jshll .l e amas Y A aal (e aals sz ool Jsh laa) o
b 4ml 3 aall sl Chay Cadl 138 apeaill W) Jaladl s jlaa) aadis ) el i
.Q\JMC_)EBAMQ;\J C_)A.d\

sle adine z sl Jka alady ) 5 538 A Gyl 13 (RUNWLD) s gl gy sk o
L Ay a5 ] Jshally Ly peali ) L(FAA) a6,k

JSEN 5 Jgaad) (e il il 4 clad) ) il L (visual basic) dal o siSa gl
A3y phally 4 )lie il )l cl gl 8 Jleaia) Jew galind L(FAA) leeadind A cilial gall
(FAA) Leeasis il Ll

Abstract

Selecting a design runway length is one of the most important decisions an airport
designer makes. The length required to accommodate the most demanding airplanes
anticipated to use an airport is a fundamental airfield design factor. This paper
describes the important role which the runway length is playing in any proposed
airport to be designed.

Computer program named (RUNWLD) was developed during this research
period to determine the runway length depending on the Federal Aviation
Administration (FAA) methodology. (RUNWLD) predicts the planned and basic
runway lengths for various mix of airplanes anticipated to use a proposed airports.

The program was written in visual basic programming language. The data
used in this program is concluded from the charts, tables, and circular advisory
adopted by (FAA) methodology. The developed program (RUNWLD) is easy tool
and user friend, in addition to that it save time while getting results comparing to
the traditional (FAA) method.

Keywords: runway length, airport, air plane, FAA, program
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| ntr oduction

Air transportation provides the backbone for passenger transport over moderate to
long distances in the world, and it is becoming an increasingly important mode for short-
range travel and cargo transport as well. As a consequence, there is agrowing demand for
use of available airspace, a heightened concern for safety, and a greater likelihood that
poor weather will be encountered during typical flight operations.

Air transportation affects this nation's competitiveness in two ways. 1) It is an
important component of the industrial base, having made a positive contribution to
balance of payments for many years, and 2) it is an enabling technology for all other
industries, providing a major avenue for commerce by moving both people and cargo.
Continued improvements in safety and efficiency of civil aviation are urgently needed to
preserve not only national competitiveness but the quality of our lives and our
environment in the process.

New technologies hold promise for increasing the productivity, reliability, and
safety of the air transportation system, but they introduce uncertainty and present new
challenges for certification. It is necessary, therefore, to create new ways of dealing with
these problems and, in the process, to look after a new generation of researchers capable
of solving problems yet to come.

Selecting a design runway length is one of the most important decisions an airport
designer makes. The length required to accommodate the most demanding airplanes
anticipated to use an airport is afundamental airfield design factor.

The runway length determines the size, cost of the airport, and controls the type of
aircraft it will serve. It may limit the payload of the critical aircraft and the length of
journey it can fly. Runway must be long enough for safe landings and takeoffs, it
accommodate differences in pilot skill, variety of aircraft types, and operational
requirements.

Airfield Requirements

Airfield facilities are those that are related to the arrival, departure, and ground
movement of aircraft. Airfield facility requirements are addressed for the following areas

(D):

1) Airfield Capacity.

2) Airfield Design Standards.

3) Runway Orientation, Length, Width, and Pavement Strength.
4) Taxiways.

5) Airport Visual Aids.
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6) Airport Lighting.

7) Radio Navigational Aids & Instrument Approach Procedures.
8) Helicopter Facilities.

9) Other Airfield Recommendations.

The runway configuration and its features represent the important factors in the

airfield requirements. The runway length required to accommodate the most demanding
airplanes anticipated to use an airport is a fundamental airfield design factor.

Factors governs Runway L ength Suitability

Various factors, in turn, govern the suitability of those available runway lengths,
most notably airport elevation above mean sea level, temperature, wind velocity, airplane
operating weights, takeoff and landing flap settings, runway surface condition (dry or
wet), effective runway gradient, presence of obstructions in the vicinity of the airport,
and, if any, locally imposed noise abatement restrictions or other prohibitions. Of these
factors, certain ones have an operational impact on available runway lengths. That is, for a
given runway the usable length made available by the airport authority may not be
entirely suitable for all types of airplane operations (2).

The goal is to construct an available runway length for new runways or extensions
to existing runways that is suitable for the forecasted critical design airplanes.

M odeling

The formulation of a system model is the most important step towards the solution
of scientific problems. A model permits the designer to predict, with some degree of
certainty, the behavior of the system under various conditions. The fundamental
conceptual deviceis an image of reality portraying the system and the interaction between
the components (3).

Models are extensively used as aids in the description and analysis of problems,
test the behavior of a new system or operating procedure prior to its actual construction,
and the need to test alternate system under identical conditions.

(FAA) Methodology to deter mine recommended Runway L ength.

As specified in Federal Aviation Administration (FAA) planning criteria, the
recommended length for a primary runway must be determined by considering either the
family of aircraft having similar performance characteristics or a specific arrcraft
requiring the longest runway. In either case, the choice should be based on aircraft that are
anticipated to use the runway on a regular basis, which is defined by the FAA Advisory
Circular (AC).
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Runway length requirements were estimated using procedures outlined in FAA
Advisory Circular (AC) 150/5325-4B, Runway Length Requirements for Airport Design,
along with additional information provided in aircraft data charts from aircraft
manufacturers. The runway length analysis methodology contained in AC 150/5325-4B
considers both arrivals and departures; however, departures typically require longer
runway lengths (2).

This Advisory Circular (AC) provides guidelinesfor airport designers and planners
to determine recommended runway lengths for new runways or extensions to existing
runways. The Advisory Circular stated an assumptions, definitions, and procedure for
determining the recommended runway length.

a. Assumptions and Definitions.

(1) Design Assumptions. The assumptions used by this AC are approaches and
departures with no obstructions, zero wind, dry runway surfaces, and zero effective
runway gradient.

(2) Critical Design Airplanes. The listing of airplanes (or a single airplane) that
results in the longest recommended runway length. The listed airplanes will be evaluated
either individually or as a single family grouping to obtain arecommended runway length.

(3) Small Airplane. An airplane of 12,500 pounds (5,670 kg) or less maximum
certificated takeoff weight.

(4) Large Airplane. An airplane of more than 12,500 pounds (5,670 kg) maximum
certificated takeoff weight.

(5) Maximum Certificated Takeoff Weight (M TOW). The maximum certificated
weight for the airplane at takeoff, i.e., the airplane’s weight at the start of the takeoff run.

(6) Regional Jets. Although there is no regulatory definition for aregional jet (RJ),
an RJ for this advisory circular is a commercial jet airplane that carries fewer than 100
passengers.

(7) Crosswind Runway. An additional runway built to compensate primary
runways that provide less than the recommended 95 percent wind coverage for the
airplanes forecasted to use the airport.

(8) Substantial Use Threshold. Federally funded projects require that critical
design airplanes have at least 500 or more annual itinerant operations at the airport
(landings and takeoffs are considered as separate operations) for an individual airplane or
afamily grouping of airplanes. Under unusual circumstances, adjustments may be madeto
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the 500 total annual itinerant operations threshold after considering the circumstances of a
particular airport. Two examples are airports with demonstrated seasonal traffic variations,
or airports situated in isolated or remote areas that have special needs.

(9) Itinerant Oper ation. Takeoff or landing operations of airplanes going from one
airport to another airport that involves a trip of at least 20 miles. Local operations are
excluded.

(10) Effective Runway Gr adient. | sthe difference between the highest and lowest
elevations of the runway centerline divided by the runway length.

b. Procedure for Deter mining Recommended Runway L engths.

AC 150/5325-4B uses a five-step process to determine recommended runway
lengths for a selected list of critical design airplanes. Generally, the five steps are as
follows:

Step.-1: Identify the critical design airplanes that will make regular use of the
proposed runway for an established planning period of at |least five years.

Step -2: Identify the airplanes that will require the longest runway lengths at
maximum certificated takeoff weight (MTOW). The second step in determining a
recommended runway length through the standard FAA process is to break down the
potential range of critical design airplanes identified in Step -1 into relevant weight
groupings or categories. The purpose of this effort is to narrow down the full range of
potential design aircraft and focus the analysis on those most critical to runway length.
Note that this grouping process is based on the individual aircraft’s maximum certified
takeoff weight. AC 150/5325-4B groups aircraft into three categories:

1) MTOW of 12,500 pounds or less.
2) MTOW over 12,500 pounds, but less than 60,000 pounds.
3) MTOW 60,000 pounds or more or Regional Jets.2.

Step -3: Determine the method that will be used for establishing the recommended
runway length. The standard FAA process is to establish the method to be utilized to
analyze the 60,000 pound or more weight category identified in Step -2. Note that AC
150/5325-4B acknowledges the potential wide variety of operational requirements
contained in that broad category. Therefore, it allows for the analysis of individual
aircraft, as opposed to the broad, family groupings of aircraft that it recommends for
smaller aircraft.
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AC 150/5325-4B provides the following options for obtaining data for aircraft of
more than 60,000 pounds:

Analyzing performance charts published by the airplane
manufacturers.

Contacting the airplane manufacturer for specific information; or

Contacting air carriers for their specific operational requirements.

Step -4. Select the recommended runway length from among the various runway
lengths generated by Step -3.

Step -5: Apply any necessary adjustment to the obtained runway length, when
instructed by the applicable chapter of this AC, to the runway length generated by step -4
to obtain a final recommended runway length. For instance, an adjustment to the length
may be necessary for runways with non-zero effective gradients.

To complete the picture for step -5, it is essential to explain the basic runway
length concept.

Basic Runway L ength

It is the most important airside design feature and should be linked to other
physical characteristics of the airport. To provide a meaningful relationship between
runway length and other physical characteristics of the airside, the actual runway length
must be converted to standard sea level conditions by removing the local effects of
elevation, airport reference temperature, and gradient. Then the resulting length is called
the basic runway length (4).

Basic runway length = planned runway length/Fe* F * Fq

Where:

Fe isthe elevation factor = 0.07E+1, where, E is the airport elevation in 1000ft.
F is the temperature factor = 0.01 [T-(15-1.956E) +1, where,

T =Ty + (T,-T)/3, where,

T isthe airport reference temperature
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T, ismonthly mean of mean daily temperature for hottest month.
T, isthe monthly mean of maximum daily temperature for same month.

Fy is the gradient factor = 0.10G + 1, where, G is the effective runway gradient
which is defined hereinabove.

Computer Program Formulation and M odeling

Program for mulation

The computer program developed during this research period is called RUNWLD
(RUNWay Length Determination). It was written using visual basic programming
language. The model is of deterministic type and calculates the recommended runway
length for airports according to Federal Aviation Administration (FAA) methodology for
various aircraft types and sizes. The aircraft maximum takeoff weight plays the main role
in the determination of the runway length.

The program permits measurement of a full range of air traffic characteristics and
Is allowing many alternative designs to be tested.

The program permits also the necessary adjustments belong to the airport
elevation, runway gradient, and airfield temperature.

The computer program is user friend and was designed in modular manner and a
great deal of care was made to make allowances for future developments.

Typical solved example showing the input and output stage interfaces for the
developed model is presented in end of this research.

Computer Program M odeling

The computer program modeling or development was achieved by three main
stages in addition to the modeling of the interferences of input and output data.

The first stage of the computer program modeling is the classification of the
various type of aircrafts anticipated to use the planned runway length according to their
weights. This stage was implemented through three steps as described below:

The first step in the computer program modeling is to identify the critical design

airplanes that will make regular use of the proposed runway for an established planning
period of at least five years.
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The second step is to establish a table contains the weight for each airplane
according to its manufacturer, type, and series as shown in Table (1) below. The runway
length for each airplane also islisted in this table depending on the FAA specifications.

The third step isto classify these design airplanes into three categories according
to their weights. These limitations were made according to FAA concepts (AC 150/5325-
4B). Table (2) represents the three groups. The classification is as follows:

1) airplanes with maximum takeoff weight of 12,500 pounds or less.

2) airplanes with maximum takeoff weight Over 12,500 pounds, but less than
60,000 pounds.

3) airplanes with maximum takeoff weight of 60,000 pounds or more or Regional
Jets.2.

The second stage of program development isto convert the chart which is adopted
by Federal Aviation Administration (FAA) into numerical values contains the magnitude
of each runway length corresponding to the airplane weights and added to table (1). These
values in this table will be adopted in the computer program to calculate the planning
runway lengths for various mix of airplanes.

The third stage is focusing on the planning runway length adjustments. These
adjustments result in determining the basic runway length. The basic runway length
represents the recommended runway length adopted in an airport design. The adopted
equation used in this programis as follow:

Basic runway length = planned runway length/Fe* F * Fq

The definitions of the equation is found hereinabove.

By the end of this stage, the program is terminated and the intended result is
obtained. The design of the airport is mainly depends on this value.

156



JCE-12% ISSUE

Table (1):-Runway length accor ding to aircraft features.

September-2008

Aircraft Maximum Takeoff Runway
Manufacturer Type Series | takeoff weight, length, ft
Ib (MTOW)
Boeing 737 800 9700
Boeing 767 200ER 9200
Boeing 757 300 136500 10400
Boeing 757 200 240000 10300
Boeing 767 300 350000 8900
Boeing 727 (JTSD-7) 200 167000 12200
Boeing 727 (JT8D-7) 200 189000 12900
Boeing 727 (JT8D-7) 100 167000 12300
Boeing 737 (CFM56-3-BI) | 300 124500 7200
Boeing 747 (JT9D-7A) 200B 736000 12200
Boeing 757 (RBI1-535E4) | 200 240000 7100
Boeing 767 (CF6-80A) 200 300000 6700
Boeing 767 (JTOD-7R4D) | 200ER | 351000 9100
Boeing 747 (PW4256) 400 496000 11200
Boeing 747 (JTgD-7A) 200B 785000 14400
DC 9 (JTSD) 30 100000 9500
DC 10 (CF6-6D) 10 400000 12700
DC 10 (CF6-50C) 30 555000 15300
MD (JTSD-217) 82 149500 9400
L 1011 (RB211-22B) | 385-| 403000 10400
Airbus (CFM56-5A1) 320 10100
Airbus 319 100 9200
Airbus 321 200 8900
Airbus 319 100s 8800
Canadair (CF34-3B1) 200LR 6900
Canadair (CF34-8C1) 700ER 5600
Canadair (CF34-8C5) 900 6800
Embraer 145 6900
Embraer Brasilia (PW118) 120 5400
Learjet Business jet 30 5550

Reference:- FAA concepts (AC 150/5325-4B).

Table (2):- Airplane classification according to their weights.

Small airplanes with less than 10 passenger seats Runway Length,ft
To accommodate 75 percent of these small airplanes | 2,480 feet
To accommodate 95 percent of these small airplanes | 3,030 feet
To accommodate 100 percent of these small airplanes | 3,600 feet

Small airplanes with 10 or more passenger seats 3,600 feet

Reference: FAA concepts (AC 150/5325-4B).
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M odel Validation

To test the validity of the developed model outputs, it is necessary to solve
the same example indicated in this research as a typical model input and output
interferences by traditional (FAA) method using the values listed in tables (1), and
(2) which they were drawn from the charts adopted by Advisory Circular (AC
150/5325-4B). The results were then compared to see if there is a significant
difference between the two results or not.

From table (1), to determine the basic takeoff runway length for Boeing 767
aircraft of type (JT9D-7R4D) with series 200ER having maximum takeoff weight,
351000 Ib is 9100 ft, which is identical to the value appeared in the computer
model output. This comparison led to the fact that the computer model is working
properly and is valid to use as a user friend tool for computing the runway length
necessary for airport design.

Discussion and Recommendation

The developed computer program (RUNWLD) predicts the planned and basic
runway lengths for various mix of airplanes anticipated to use a proposed airports.

The developed program adopts the Federal Aviation Administration (FAA)
methodology. This method uses charts and tables to complete the determination of the
runway length. These charts and tables are not available every where and in any time,
therefore the developed program (RUNWLD) is easy tool and user friend, in addition to
that it save time while getting results comparing to the traditional (FAA) method.
(RUNWLD) may run on any available computer because of its small size and no need of
high technology computers.

Development of this computer program is necessary to model other important
design factors for any proposed planned airport, for example, the design of taxiways,
aprons, and terminals. Recommendation required for developing and extending the
validity of the model, considering a wide range of model applications is also necessary.

It is recommended for future development to simulate more types and sizes of
aircraft rather than collected in this research tables.
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Abstract:

This study explores the potential of back propagation neural networks (BPNN) computing
paradigm to predict the ultimate bearing capacity of shallow foundations on cohesionless
soils. The data from 97 load tests on footings (with sizes corresponding to those of real
footings and smaller sized model footings) were used to train and validate the model. Five
parameters are considered to have the most significant impact on the magnitude of
ultimate bearing capacity of shallow foundations on cohesionless soil and are thus used as
the model inputs. These include the width of the footing, depth of embedment, length to
width ratio, dry or submerge unit weight and angle of internal friction of the soil. The
model output is the ultimate bearing capacity. Performance of the model was
comprehensively evaluated. The values of the performance evaluation measures such as
coefficient of correlation, root mean square error, mean absolute error reveal that the
model can be effectively used for the bearing capacity prediction. BPNN model is
compared with the values predicted by most commonly used bearing capacity theories.
The results indicate that the model perform better than the theoretical methods.

KEYWORDS: Ultimate bearing capacity; Shallow foundations, cohesionless soil; back
propagation neural network (BPNN); prediction
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1. Introduction:

Every foundation design requires satisfying two major criteria: ultimate bearing capacity and
limiting settlement of foundations [1]. Of these two criteria, the ultimate bearing capacity is
governed by shearing strength of the soil and is estimated by the theories of Terzaghi [2],
Meyerhof [3], Vesic [4] and others. The basis for most of the bearing capacity theories is the limit
equilibrium method. The bearing capacities thus obtained are validated through laboratory studies
by numerous researchers. However, the experimental researches are generally carried out on
smaller sized models, which are highly scaed down models compared to real footings.
Consequently, many researchers (e.g., [5-8]) have cautioned that one should be very careful
when extrapolating findings of experiments conducted on small footings that have a width of a
few inches, to the large sized footings. The reason for thisis attributed to the increase in shearing
strain aong the slip line with the increase in width of the foundation and the ratio of mean grain
size of the soil and the footing width [9]. The scale effect due to particle size becomes
insignificant when the ratio of mean grain size and the width of footing is less than a certain limit,
depending on the type of the soil [10]. For large-scal e foundations on dense sand, shearing strains
show considerable variation aong the slip line and the average mobilized angle of shearing
resistance along the slip line is smaler than the maximum value of the angle of shearing
resistance (ppmax) Obtained by plane strain shear tests. Therefore, the bearing capacity formula
generally over estimates the bearing capacities of actual foundations on dense sand, if @pmax IS
used [11].. Hence, an dternative method is required that provides better estimates of bearing

capacity.

During the last two decades several researchers have developed effective modeling tools using
Neural Networks (NNs) approach. NNs have been applied to many geotechnical engineering
problems, including the prediction of the bearing capacity of piles, settlement predictions,
liquefaction and slope stability [12]. This indicates that NNs can be used for both prediction and
forecasting of events. The mgor advantage of NNs is that they can be updated easily as and when
new data become available that eliminates the need for a specialist to reanayze the old and new
data, update the old design aids or equations and/or propose new equations [13].

This paper demonstrates the applicability back propagation neural network algorithm, in
developing an effective model for predicting the ultimate bearing capacity of shallow foundations
on cohesionless soils, and to undertake a comparative study with the commonly used bearing
capacity theories. The database, which consists of load test results of large-scale footings and
smaller sized model footings, is used to develop and verify the model. The performance of the
model isthen compared with the most commonly used bearing capacity theories.

2. NEURAL NETWORKS (NN)

NN is a computational tool, which attempts to simulate the architecture and internal operationa
features of the human brain and nervous system [14]. Three or more layers, which includes an
input layer, an output layer and a number of hidden layers in which neurons are connected to each
other with modifiable weighted interconnections (Fig. 1), form NN architectures. Each neuron
has an associated transfer function, which describes how the weighted sum of its inputs is
converted to the results into an output vaue. Each hidden or output neuron receives a number of
weighted input signals from each of the units of the preceding layer and generates only one
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output value (Fig. 2). This NN architecture is commonly referred to as a fully interconnected
feed-forward multi-layer perceptron. In addition, there is also a bias, which is only connected to
neurons in the hidden and output layers with modifiable weighted connections. The number of
neurons in each layer may vary depending on the problem.

X1 X2 Xp

Input Layer

Hidden Layer

Output Layer

out;  out, outy,

Fig. 1. A typical MLP neura network.

2 ,2
|\ Ou
1
1

1

I

I

W

' // Activation

n Function

Fig. 2. The structure of an artificial neuron.
The most widely used training algorithm for multilayered feed-forward networks is perhaps the
back-propagation (BP) algorithm [see, for instance, [15, 16] ]. The BP algorithm basicaly
involves two phases. One is the forward phase where the activations are propagated from the
input to the output layer. The second is the backward phase where the error between the observed
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actua vaue and the desired nominal value in the output layer is propagated backwards in order to
modify the weights and bias values. Before training a feed work network, the inputs and the
outputs of training and testing sets must be initialized. In the forward phase, the weighted sum of
input componentsis calculated as

n

[o] .
net ; :a w; X; + bias, (1)

i=1
where net; is the weighted sum of the jth neuron for the input received from the preceding layer
with n neurons, w; isthe weight between the jth neuron and the ith neuron in the preceding layer,
X; 1s the output of the ith neuron in the preceding layer. The output of the jth neuron out; is
calculated with asigmoid function as follows:

out; = f(netj)=ﬁl(naj) 2

The training of the network is achieved by adjusting the weights and is carried out through alarge
number of training sets and training cycles. The goal of the training procedure is to find the
optimal set of weights, which would produce the right output for any input in the ideal case.
Training the weights of the network is iteratively adjusted to cepture the relationship between the
input and output patterns. The training of the network is accomplished by adjusting the weights
and is carried out through a large number of training sets and training iterations. The goal of the
learning procedure is to find the optimal set of weights, which in the ideal case would produce the
right output for any input. The output of the network is compared with a desired response to
produce an error. The performance of the MLP is measured in terms of a desired signal and the
criterion for convergence.

In this study, a computer program has been developed and performed under EXCEL worksheet.
The back-propagation learning agorithm has been used in feed-forward with one hidden-layer,
back propagation algorithm (BP), as one of the most famous training algorithms for the multi-
layer perceptron (MLP), is a gradient descent technique to minimize the error E for a particular
training pattern, For adjusting the weight (w;) from the ith input unit to the jth output, in the
batched mode variant the descent is based on the gradient

. _@(E §
NEG——~ 3
éﬂwu P ©

for total training set

D\Nij(n)=-e%+a[)w”(n-1) (4)

ij
The gradient gives the direction of error E, The parameters ¢ and o are the learning rate and
momentum term, respectively.

3. DEVELOPMENT OF MODEL FORULTIMATE BEARING CAPACITY
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One of the more important steps in the model development for the estimation of bearing capacity
of shallow foundations is identification of parameters that affect the bearing capacity, for which
some of the traditional bearing capacity methods [2-4, 17] are examined. Despite the fact that the
bearing capacity values obtained through these methods differ considerably, the basic form of
equation is the same for all the methods, which is as follows for foundations in cohesionless soil:

d, =9ON,S,d, +0.5BgN S,d, (5)
where B — width of foundation, D — depth of foundation, y — unit weight of sand (below and
above the foundation level), Ny, N, — bearing capacity factors, S, , S, — shape factors and
dq, d,—depth factors. Though various researchers propose different equations for the computation
of these factors they primarily depend on the angle of shearing resistance of the sand and the
geometry of the foundation. It is clear from the above that the bearing capacity of foundation
depends on a considerable number of physical parameters of the foundation and the soil in which
the foundation is embedded. Among the parameters related to the foundation, the main factors
affecting the bearing capacity are its width (least lateral dimension, B), length of footing (L),
shape (square, rectangular and circular) and depth of embedment (D). The depth of foundation
has the greatest effect on the bearing capacity of all the physical properties of the foundation [6].
The main parameters in regard to the soil (sand)

are its angle of shearing resistance and the unit weights from above and below the water table, if
present. There are some other factors such as compressibility and thickness of the soil layer
beneath the foundation that contribute to a lesser degree. Of all the properties of a soil, the angle
of shearing resistance, ¢ , has greatest influence on the bearing capacity, which increases with the
relative density of the soil. The bearing capacity is directly proportional to the unit weight of the
soil and isinfluenced by the location of water table.

The effect of compressibility is small, except for loose densities, and is generaly less important
in bearing capacity computation [6]. Moreover, there are insufficient data to consider
compressibility as well as thickness of soil stratum. Therefore they are not considered explicitly
in this study. Further, the recent study by Foye et a. [18], based on religbility analysis of the
design of foundations identified B, L, D, y and ¢ as the important parameters that affect bearing
capacity, and also discussed the degree of influence of these parameters on N,, S,, d,. Based on
the above, the five input parameters used for the model development in this study are width of
footing (B), depth of footing (D), footing geometry (L/B), unit weight of sand (y) and angle of
shearing resistance (¢). Ultimate bearing capacity (qu) is the single output variable.

n Thedata used for model development

The data used for calibrating and validating the model were collected from literature, which
include load test data on red sized foundations, as well as the corresponding information
regarding the footing and soil. The data base thus developed comprises a total of 97 data sets,
which consists of results of square, rectangular and strip footings of different sizes tested in sand
beds of various densities. To enhance the performance of the model, the data used are more
evenly distributed (i.e., the number of data for large sized footings and smaller sized models are
equal). Of the 97 data sets, 47 are from load tests on large-scale footings and 50 are from smaller
sized model footings. Of the 47 large-scale footing data, 24 were reported by Muhs and WeiB
[19], 11 by WeiB [20], 5 by Muhs et al. [21], 2 by Muhs and WeiB [22], 5 by Briaud and
Gibbens [23]. The experimenta results of smaller scale model footings were reported by Gandhi
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[24]. The data used are presented in Table 1. The large-scale tests at the test area of DEGEBO,
Berlin were conducted in a submerged condition and hence submerged unit weights are used for
these tests. The angle of shearing resistance as reported by the respective authors of the paper are
adopted in the analysis, despite the mobilized angle of shearing resistance at failure for the
axisymmetric and plain strain conditions are different. However, the difference in the angle of
shearing resistance between these two conditions is not more than 10%. Moreover, in the case of
laboratory model tests the angles of shearing resistance used are obtained from the direct shear
tests conducted at very low normal stresses. Thus, the effect of dilation is also included. In the
case of large-scale footings the ultimate load is defined as the load corresponding to the point
where the slope of the load settlement curve is a minimum and for smaller size model footings, it
is defined as the load corresponding to the point of break of the load settlement curvein alog-log
plot. The available data are divided into two sets: training and validation. Eighty percent (i.e., 78)
of the data are used for calibration and 20% (19) are used for validation. The representative set of
patterns for the training phase has been selected in such a way that it contains all the patterns
including the maximum and minimum values of all the input and output data. In the present
study, the available data are randomly divided into training and validation sets in such a way that
they are representative of same statistical population. Once training has been successfully
accomplished, the performance of the model is tested.

n NN model development

The basic strategy for developing a neural-based model of material behavior is to train a
neural network on the results of a series of experiments on material. If the experimenta results
contain the relevant information about the materia behavior, then the trained neura network
would contain sufficient information aout the material behavior to qualify as a material model.
Such atrained neura network not only would be able to reproduce the experimental results it was
trained on, but through its generalization capability should be able to gpproximate the results of
other experiments [25].

The feed-forward multilayer perceptron (MLP) is used in the present study; the description of
which can be found in many publications [26,27]. A back propagation MLP with one hidden
layer has proven to be cgpable of providing accurate approximation of any continuous function
provided there are sufficient hidden nodes [28]. Hence, one hidden layer is used for the present
study. As there are five input variables and one output variable, five nodes in the input layer and
one node in the output layer are used. Further, NNs are very sensitive to the number of nodes in
the hidden layer. Too many neurons in the hidden layer can lead to over fitting, i.e., the training
datawill be well modeled and the sum of the squared errors will be small, but the network will be
modeling the noise in the data as well as the trends. Therefore, the network will not generalize
well on the testing data. A common heuristic gpproach to avoid over fitting is early stopping. This
approach involves monitoring the generalization error and stopping training when the minimum
validation error is observed. However, some care is needed when to stop, since the validation
error surface may have local minimaor long flat regions preceding a steep drop-off [29].
Table 1 The data used for developing the model

CaseNo. Source B(m) D(m) L/B ygory (kN/m’) ¢ (deg) q.(kPa)
1 Muhsetal.[21] 0.6 0.3 2 9.85 349 270
2 0.6 0 2 10.2 37.7 200
3 0.6 0.3 2 10.2 37.7 570
4 0.6 0 2 10.85 448 860
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5 0.6 0.3 2 10.85 448 1760

6 WeB [20] 0.5 0 1 10.2 37.7 154

7 05 0 1 10.2 37.7 165

8 0.5 0 2 10.2 37.7 203

9 0.5 0 2 10.2 37.7 195
10 05 0 3 10.2 37.7 214
11 0.52 0 385 102 37.7 186
12 0.5 0.3 1 10.2 37.7 681
13 0.5 0.3 2 10.2 37.7 542
14 0.5 0.3 2 10.2 37.7 530
15 0.5 0.3 3 10.2 37.7 402
16 0.52 0.3 385 102 37.7 413
17 Muhsand WeiB [19] 0.5 0 1 117 37 111
18 0.5 0 1 117 37 132
19 0.5 0 2 117 37 143
20 0.5 0013 1 117 37 137
21 0.5 0.029 4 117 37 109
22 0.5 0127 4 117 37 187
23 0.5 0.3 1 117 37 406
24 0.5 0.3 1 117 37 446
25 0.5 0.3 4 117 37 322
26 0.5 0.5 2 117 37 565
27 0.5 0.5 4 117 37 425
28 0.5 0 1 1241 44 782
29 0.5 0 4 1241 44 797
30 0.5 0.3 1 1241 44 1940
31 05 0.3 1 1241 44 2266
32 05 0.5 2 1241 44 2847
33 0.5 0.5 4 1241 44 2033
34 05 049 4 12.27 42 1492
35 0.5 0 1 11.77 37 123
36 0.5 0 2 11.77 37 134
37 05 0.3 1 11.77 37 370
38 0.5 0.5 2 11.77 37 464
39 0.5 0 4 12 40 461
40 0.5 0.5 4 12 40 1140
41 Muhsand WeB [22] 1 0.2 3 11.97 39 710
42 1 0 3 11.93 40 630
43 Briaud and Gibbens[23] 0991 0711 1 158 32 17737
44 3004 0762 1 158 32 1019.4
45 2489 0762 1 158 32 1158
46 1492 0762 1 158 32 1540
47 3016 0889 1 158 32 1161.2
48 Gandhi [24] 0.0585 0.029 595 157 34 585
49 0.0585 0.058 595 157 34 70.91
50 0.0585 0.029 595 16.1 37 825
51 0.0585 0.058 595 16.1 37 98.93
52 0.0585 0.029 595 165 39.5 1215
53 0.0585 0.058 595 165 395 1429
54 0.0585 0.029 595 168 415 1575

Table 1 (continued)

CaseNo. Source B(m) D(m) L/B ygory (kN/m’) ¢ (deg) q.(kPa)
55 0.0585 0.058 595 1638 415 184.9
56 0.0585 0.029 595 171 425 180.5
57 0.0585 0.058 595 171 425 211
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58 0094 0047 6 157 34 4.7

59 0094 0.094 6 157 34 915

60 0094 0.047 6 161 37 104.8
61 0094 0.094 6 161 37 1275
62 0094 0.047 6 165 395 155.8
63 0094 0.094 6 165 395 185.6
64 0094 0047 6 16.8 415 206.8
65 0094 0.094 6 16.8 415 2446
66 0094 0047 6 171 425 235.6
67 0094 0.094 6 171 425 279.6
68 0152 0.075 595 157 34 98.2

69 0152 015 595 157 34 122.3
70 0152 0.075 59 161 37 143.3
71 0152 015 59 161 37 176.4
72 0152 0.075 595 165 395 2112
73 0152 015 595 165 395 2545
74 0152 0.075 595 168 415 285.3
75 0152 015 595 168 415 3425
76 0152 0.075 59 171 425 335.3
77 0152 015 59 171 425 400.6
78 0094 0047 1 157 34 67.7

79 0094 0094 1 157 34 90.5

80 0094 0047 1 161 37 98.8

81 0094 0094 1 161 37 1315
82 0094 0047 1 165 395 147.8
83 0094 0094 1 165 395 1916
84 0094 0047 1 16.8 415 196.8
85 0094 0094 1 16.8 415 253.6
86 0094 0047 1 171 425 228.8
87 0094 0094 1 171 425 295.6
88 0152 0075 1 157 34 91.2

89 0152 015 1 157 34 1244
90 0152 0075 1 16.1 37 135.2
91 0152 015 1 16.1 37 182.4
92 0152 0075 1 165 395 201.2
93 0152 015 1 165 395 264.5
94 0152 0075 1 168 415 276.3
95 0152 015 1 16.8 415 361.5
96 0152 0075 1 171 425 325.3
97 0152 015 1 17.1 42.5 423.6

The steps for developing NN models, as outlined by Maier and Dandy [30], are used as aguide in
this work. These include the determination of model inputs and outputs, divison and
preprocessing of the available data, the determination of appropriate network architecture,
optimization of the connection weights training, stopping criteria, and model validation. In this
study, the general strategy adopted for finding the optimal parameters that control the training
processis as follows.

For each trial number of hidden layer nodes, random initial weights and biases are generated. The
neural network is then trained with different combinations of momentum terms and learning rates
in an attempt to identify the NN model that performs best on the validation data. The momentum
terms used in this study are 0.005, 0.01, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 0.95 and 0.99, whereas the
learning rates used are 0.05, 0.1, 0.15, 0.2, 0.4, 0.6, 0.8, 0.9 and 0.95. Since the back-propagation
training agorithm uses a first-order gradient descent technique to adjust the connection weights,
it may get trapped in aloca minimum if the initial starting point in weight space is unfavorable.
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Consequently, the model that has the optimum momentum term and learning rate is retrained a
number of times with different initial weights and biases until no further improvement occurs.

n Model evaluation

Quantitative assessments of the degree to which the model simulations match the actua output
are used to provide an evaluation of the model’s predictive abilities. As a single evaluation
measure is not available [31], amulti criteria assessment was performed in the current study with
various goodness-of-fit statistics. These measures can be grouped into two types: relative and
absolute. Relative goodness-of-fit measures are non-dimensional indices, which provide arelative
comparison of the performance of one model against another. In contrast, absolute goodness-of-
fit statistics are measured in the units of ultimate bearing capacity. The criteria that are employed
for model evaluation are the coefficient of correlation (R), root-mean-square error (RMSE)
between the actua and predicted values and the mean absolute error (MAE). The definition of
these evaluation criteriais provided in Table 2.

Table 2 Performance evaluation criteria

Evaluation criteria Definition
2 n m_om ¢ \C
.. . _ a'i:l(yi -y )(y|'Y)
Coefficient of correlation (R) R=—— — —
Jaiﬂ(y{“- y™) Jaiﬂ(yf- y*)
2 n m c \2
Root-mean-square error (RM SE) RMSE = \/ a.,(y-y)
n
Mean absolute error (MAE) MAE :%éi":l Y-y

Note: y™and y’ are the measured and computed ultimate bearing capacity values, respectively,

m

Yi
corresponding to n patterns. Smith [32] suggested the following guide for the value of (r) between
0.0and 1.0:

r|> 0.8 strong correlation exists between two sets of variables;

and 7,‘3 are the mean of the measured and computed ultimate bearing capacity values

0.24r[40.8 correlation exists between the two sets of variables; and

|r| £0.2 weak correlation exists between the two sets of variables.

The RMSE is the most popular measure of error and has the advantage that large errors receive
much greater attention than small errors. In contrast with RMSE, MAE eliminates the emphasis
given to large errors. Both RMSE and MAE are desirable when the evaluated output data are
smooth or continuous. The optimum model is a model with a highest value of (R) and a lowest
vaue of (RMSE) and (MAE).

4. TRADITIONAL METHODSFOR ULTIMATE BEARING CAPACITY PREDICTION

Many theoretical methods for the prediction of ultimate bearing capacity of shallow foundations
are presented in the literature. Among these, three are chosen for the purpose of assessing the
relative performance of NN model. These include the methods proposed by Meyerhof [3], Vesic
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[4] and Hansen [33]. These methods are used for comparison as they are commonly used for
estimating the ultimate bearing capacity.

5. Results and Discussion

The impact of the number of hidden nodes, learning rate and momentum term on NN
performance is shown in Figures 3,4, and 5 respectively. Fig. 3 shows that the network with three
hidden layer nodes has the lowest prediction error. Figures 4 and 5 show that the best prediction
was obtained with amomentum value of 0.95 and learning rate 0.8 respectively.
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Fig. 3. Performance of neural network models with different hidden layer nodes
(learning rate = 0.2 and momentum term = 0.8)
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Fig.5 Effect of various momentum terms on Fig. 6 Effect of various learning rates on
neural network performance (hidden neural network performance (hidden
nodes = 3 and learning rate = 0.2) nodes = 3 and momentum term = 0.8)
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The predictive performance of the optima neural network model (i.e., three layer nodes,
momentum value of 0.95, and learning rate of 0.8) is summarized in Table 3. The results indicate
that the NN model performs well, with an R of 0.939, an RM SE of 158.67 kPa, and an MAE of
86.73 kPafor the validation set.

Table (3) Neural Network Results

Data set R RMSE (MPa) MAE (MPa)
All data 0.983 101.23 59.74
Traning 0.990 81.31 53.17
Validation  0.939 158.67 86.73

Comparisons of the results predicted using the NN and the measured values of bearing capacity
are presented in Fig. 7, which shows that the NN model performs reasonably for all data, Training
and Validation data used in this work.

The values of performance measures off NN model and bearing capacity theories for all data set
are summarized in Table 4. The RMSE, and MAE values for the NN model are less than those for
the traditiona theories chosen in this work, while R are higher. Comparisons of the predicted
values by traditional theories and the measured values of bearing capacity are presented in Fig. 8,
which show that R? are higher for NN model than those for traditional theories. This indicates
that the performance of NN model is better than the theoretical methods.

Table (4) Comparison of performance measures in model predicted bearing capacity values and
traditional theoriesfor all data set

Performance measures NN Model Terzaghi Meyerhof  Hansen
R 0.983 0.902 0.939 0.942

RM SE (kPa) 101.23 340.38 188.26 295.743
MAE (kPa) 59.74 15351 100.66 148.514

6-Conclusions

This paper deals with the problem of prediction of the ultimate bearing capacity of shallow
foundations on cohesionless soil. The results indicate that the NN model is able to predict well
the ultimate bearing capacity of shallow foundations. The model performs better than the
theoretical methods. This was evidenced by the performance measures used for evaluating the
models. Also, the advantage of these soft computing techniques is that they can be updated easily,
as and when new data become available avoiding expertise and time needed to update the old
design aid or equation and/or propose a new equation.
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