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 الخلاصة
الطول المطلوب لاحتواء . ان اختيار طول المدرج هو واحد من اهم القرارات لاي مصمم مطارات

هذا البحث يصف الدور المهم الذي يلعبه طول . الطائرات التي تستخدم المطار هو العامل الاساسي للتصميم
 .المدرج لاي تصميم مقترح للمطارات

 لهذا الغرض خلال فترة البحث لايجاد طول المدرج معتمدا على (RUNWLD)تطوير برنامج سمي تم 
 .البرنامج يتنبأ بالطول لخليط واسع من الطائرات. (FAA)طريقة 

البيانات التي ادخلت في البرنامج اخذت من الجداول والاشكال . (visual basic)البرنامج مكتوب بلغة 
البرنامج سهل الاستعمال ويوفر الوقت باستخراج النتائج مقارنة بالطريقة . (FAA)ها والمواصفات التي تستخدم

 .(FAA)التقليدية التي تستخدمها 
Abstract 
Selecting a design runway length is one of the most important decisions an airport 
designer makes. The length required to accommodate the most demanding airplanes 
anticipated to use an airport is a fundamental airfield design factor. This paper 
describes the important role which the runway length is playing in any proposed 
airport to be designed. 

Computer program named (RUNWLD) was developed during this research 
period to determine the runway length depending on the Federal Aviation 
Administration (FAA) methodology. (RUNWLD) predicts the planned and basic 
runway lengths for various mix of airplanes anticipated to use a proposed airports. 

The program was written in visual basic programming language. The data 
used in this program is concluded from the charts, tables, and circular advisory 
adopted by (FAA) methodology. The developed program (RUNWLD) is easy tool 
and user friend, in addition to that it save time while getting results comparing to 
the traditional (FAA) method. 

Keywords: runway length, airport, airplane, FAA, program 
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Introduction 

Air transportation provides the backbone for passenger transport over moderate to 
long distances in the world, and it is becoming an increasingly important mode for short-
range travel and cargo transport as well. As a consequence, there is a growing demand for 
use of available airspace, a heightened concern for safety, and a greater likelihood that 
poor weather will be encountered during typical flight operations.  

Air transportation affects this nation's competitiveness in two ways: 1) It is an 
important component of the industrial base, having made a positive contribution to 
balance of payments for many years, and 2) it is an enabling technology for all other 
industries, providing a major avenue for commerce by moving both people and cargo. 
Continued improvements in safety and efficiency of civil aviation are urgently needed to 
preserve not only national competitiveness but the quality of our lives and our 
environment in the process. 

New technologies hold promise for increasing the productivity, reliability, and 
safety of the air transportation system, but they introduce uncertainty and present new 
challenges for certification. It is necessary, therefore, to create new ways of dealing with 
these problems and, in the process, to look after a new generation of researchers capable 
of solving problems yet to come. 

Selecting a design runway length is one of the most important decisions an airport 
designer makes. The length required to accommodate the most demanding airplanes 
anticipated to use an airport is a fundamental airfield design factor. 

The runway length determines the size, cost of the airport, and controls the type of 
aircraft it will serve. It may limit the payload of the critical aircraft and the length of 
journey it can fly. Runway must be long enough for safe landings and takeoffs, it 
accommodate differences in pilot skill, variety of aircraft types, and operational 
requirements. 

Airfield Requirements 

Airfield facilities are those that are related to the arrival, departure, and ground 
movement of aircraft. Airfield facility requirements are addressed for the following areas 
(1): 

1) Airfield Capacity. 
2) Airfield Design Standards. 
3) Runway Orientation, Length, Width, and Pavement Strength. 
4) Taxiways. 
5) Airport Visual Aids. 
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6) Airport Lighting. 
7) Radio Navigational Aids & Instrument Approach Procedures. 
8) Helicopter Facilities. 
9) Other Airfield Recommendations. 

The runway configuration and its features represent the important factors in the 
airfield requirements. The runway length required to accommodate the most demanding 
airplanes anticipated to use an airport is a fundamental airfield design factor. 

Factors governs Runway Length Suitability 

Various factors, in turn, govern the suitability of those available runway lengths, 
most notably airport elevation above mean sea level, temperature, wind velocity, airplane 
operating weights, takeoff and landing flap settings, runway surface condition (dry or 
wet), effective runway gradient, presence of obstructions in the vicinity of the airport, 
and, if any, locally imposed noise abatement restrictions or other prohibitions. Of these 
factors, certain ones have an operational impact on available runway lengths. That is, for a 
given runway the usable length made available by the airport authority may not be 
entirely suitable for all types of airplane operations (2). 

The goal is to construct an available runway length for new runways or extensions 
to existing runways that is suitable for the forecasted critical design airplanes. 

Modeling 

The formulation of a system model is the most important step towards the solution 
of scientific problems. A model permits the designer to predict, with some degree of 
certainty, the behavior of the system under various conditions. The fundamental 
conceptual device is an image of reality portraying the system and the interaction between 
the components (3). 

Models are extensively used as aids in the description and analysis of problems, 
test the behavior of a new system or operating procedure prior to its actual construction, 
and the need to test alternate system under identical conditions. 

(FAA) Methodology to determine recommended Runway Length.  

As specified in Federal Aviation Administration (FAA) planning criteria, the 
recommended length for a primary runway must be determined by considering either the 
family of aircraft having similar performance characteristics or a specific aircraft 
requiring the longest runway. In either case, the choice should be based on aircraft that are 
anticipated to use the runway on a regular basis, which is defined by the FAA Advisory 
Circular (AC). 
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Runway length requirements were estimated using procedures outlined in FAA 
Advisory Circular (AC) 150/5325-4B, Runway Length Requirements for Airport Design, 
along with additional information provided in aircraft data charts from aircraft 
manufacturers. The runway length analysis methodology contained in AC 150/5325-4B 
considers both arrivals and departures; however, departures typically require longer 
runway lengths (2). 

This Advisory Circular (AC) provides guidelines for airport designers and planners 
to determine recommended runway lengths for new runways or extensions to existing 
runways. The Advisory Circular stated an assumptions, definitions, and procedure for 
determining the recommended runway length. 

a. Assumptions and Definitions.  

(1) Design Assumptions. The assumptions used by this AC are approaches and 
departures with no obstructions, zero wind, dry runway surfaces, and zero effective 
runway gradient. 

(2) Critical Design Airplanes. The listing of airplanes (or a single airplane) that 
results in the longest recommended runway length. The listed airplanes will be evaluated 
either individually or as a single family grouping to obtain a recommended runway length.  

(3) Small Airplane. An airplane of 12,500 pounds (5,670 kg) or less maximum 
certificated takeoff weight.  

(4) Large Airplane. An airplane of more than 12,500 pounds (5,670 kg) maximum 
certificated takeoff weight.  

(5) Maximum Certificated Takeoff Weight (MTOW). The maximum certificated 
weight for the airplane at takeoff, i.e., the airplane’s weight at the start of the takeoff run.  

(6) Regional Jets. Although there is no regulatory definition for a regional jet (RJ), 
an RJ for this advisory circular is a commercial jet airplane that carries fewer than 100 
passengers.  

(7) Crosswind Runway. An additional runway built to compensate primary 
runways that provide less than the recommended 95 percent wind coverage for the 
airplanes forecasted to use the airport.  

(8) Substantial Use Threshold. Federally funded projects require that critical 
design airplanes have at least 500 or more annual itinerant operations at the airport 
(landings and takeoffs are considered as separate operations) for an individual airplane or 
a family grouping of airplanes. Under unusual circumstances, adjustments may be made to 
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the 500 total annual itinerant operations threshold after considering the circumstances of a 
particular airport. Two examples are airports with demonstrated seasonal traffic variations, 
or airports situated in isolated or remote areas that have special needs.  

(9) Itinerant Operation. Takeoff or landing operations of airplanes going from one 
airport to another airport that involves a trip of at least 20 miles. Local operations are 
excluded.  

(10) Effective Runway Gradient. Is the difference between the highest and lowest 
elevations of the runway centerline divided by the runway length. 

b. Procedure for Determining Recommended Runway Lengths.  

AC 150/5325-4B uses a five-step process to determine recommended runway 
lengths for a selected list of critical design airplanes. Generally, the five steps are as 
follows: 

Step.-1: Identify the critical design airplanes that will make regular use of the 
proposed runway for an established planning period of at least five years. 

Step -2: Identify the airplanes that will require the longest runway lengths at 
maximum certificated takeoff weight (MTOW). The second step in determining a 
recommended runway length through the standard FAA process is to break down the 
potential range of critical design airplanes identified in Step -1 into relevant weight 
groupings or categories. The purpose of this effort is to narrow down the full range of 
potential design aircraft and focus the analysis on those most critical to runway length. 
Note that this grouping process is based on the individual aircraft’s maximum certified 
takeoff weight. AC 150/5325-4B groups aircraft into three categories: 

1) MTOW of 12,500 pounds or less. 

2) MTOW over 12,500 pounds, but less than 60,000 pounds. 

3) MTOW 60,000 pounds or more or Regional Jets.2. 

Step -3: Determine the method that will be used for establishing the recommended 
runway length. The standard FAA process is to establish the method to be utilized to 
analyze the 60,000 pound or more weight category identified in Step -2. Note that AC 
150/5325-4B acknowledges the potential wide variety of operational requirements 
contained in that broad category. Therefore, it allows for the analysis of individual 
aircraft, as opposed to the broad, family groupings of aircraft that it recommends for 
smaller aircraft. 
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AC 150/5325-4B provides the following options for obtaining data for aircraft of 
more than 60,000 pounds: 

• Analyzing performance charts published by the airplane 
manufacturers. 
• Contacting the airplane manufacturer for specific information; or 
• Contacting air carriers for their specific operational requirements. 

Step -4: Select the recommended runway length from among the various runway 
lengths generated by Step -3. 

Step -5: Apply any necessary adjustment to the obtained runway length, when 
instructed by the applicable chapter of this AC, to the runway length generated by step -4 
to obtain a final recommended runway length. For instance, an adjustment to the length 
may be necessary for runways with non-zero effective gradients. 

To complete the picture for step -5, it is essential to explain the basic runway 
length concept. 

Basic Runway Length 

It is the most important airside design feature and should be linked to other 
physical characteristics of the airport. To provide a meaningful relationship between 
runway length and other physical characteristics of the airside, the actual runway length 
must be converted to standard sea level conditions by removing the local effects of 
elevation, airport reference temperature, and gradient. Then the resulting length is called 
the basic runway length (4). 

 

Basic runway length = planned runway length/Fe * Ft * Fg 

 

Where: 

Fe is the elevation factor = 0.07E+1, where, E is the airport elevation in 1000ft. 

Ft is the temperature factor = 0.01 [T-(15-1.956E) +1, where, 

T = T1 + (T2-T1)/3, where, 

T is the airport reference temperature 
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T1 is monthly mean of mean daily temperature for hottest month. 

T2 is the monthly mean of maximum daily temperature for same month. 

Fg is the gradient factor = 0.10G + 1, where, G is the effective runway gradient 
which is defined hereinabove. 

Computer Program Formulation and Modeling 

Program formulation 

The computer program developed during this research period is called RUNWLD 
(RUNWay Length Determination). It was written using visual basic programming 
language. The model is of deterministic type and calculates the recommended runway 
length for airports according to Federal Aviation Administration (FAA) methodology for 
various aircraft types and sizes. The aircraft maximum takeoff weight plays the main role 
in the determination of the runway length. 

The program permits measurement of a full range of air traffic characteristics and 
is allowing many alternative designs to be tested. 

The program permits also the necessary adjustments belong to the airport 
elevation, runway gradient, and airfield temperature. 

The computer program is user friend and was designed in modular manner and a 
great deal of care was made to make allowances for future developments. 

Typical solved example showing the input and output stage interfaces for the 
developed model is presented in end of this research. 

Computer Program Modeling 

The computer program modeling or development was achieved by three main 
stages in addition to the modeling of the interferences of input and output data. 

The first stage of the computer program modeling is the classification of the 
various type of aircrafts anticipated to use the planned runway length according to their 
weights. This stage was implemented through three steps as described below: 

The first step in the computer program modeling is to identify the critical design 
airplanes that will make regular use of the proposed runway for an established planning 
period of at least five years. 
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The second step is to establish a table contains the weight for each airplane 
according to its manufacturer, type, and series as shown in Table (1) below. The runway 
length for each airplane also is listed in this table depending on the FAA specifications. 

The third step is to classify these design airplanes into three categories according 
to their weights. These limitations were made according to FAA concepts (AC 150/5325-
4B). Table (2) represents the three groups. The classification is as follows: 

1) airplanes with maximum takeoff weight of 12,500 pounds or less. 

2) airplanes with maximum takeoff weight Over 12,500 pounds, but less than 
60,000 pounds. 

3) airplanes with maximum takeoff weight of 60,000 pounds or more or Regional 
Jets.2. 

The second stage of program development is to convert the chart which is adopted 
by Federal Aviation Administration (FAA) into numerical values contains the magnitude 
of each runway length corresponding to the airplane weights and added to table (1). These 
values in this table will be adopted in the computer program to calculate the planning 
runway lengths for various mix of airplanes. 

The third stage is focusing on the planning runway length adjustments. These 
adjustments result in determining the basic runway length. The basic runway length 
represents the recommended runway length adopted in an airport design. The adopted 
equation used in this program is as follow: 

Basic runway length = planned runway length/Fe * Ft * Fg 

The definitions of the equation is found hereinabove. 

By the end of this stage, the program is terminated and the intended result is 
obtained. The design of the airport is mainly depends on this value. 
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Table (1):-Runway length according to aircraft features. 
Aircraft 

Manufacturer Type Series 
Maximum 

takeoff weight, 
lb (MTOW) 

Takeoff Runway 
length, ft 

Boeing 737 800  9700 
Boeing 767 200ER  9200 
Boeing 757 300 136500 10400 
Boeing 757 200 240000 10300 
Boeing 767 300 350000 8900 
Boeing 727 (JTSD-7) 200 167000 12200 
Boeing 727 (JT8D-7) 200 189000 12900 
Boeing 727 (JT8D-7) 100 167000 12300 
Boeing 737 (CFM56-3-BI) 300 124500 7200 
Boeing 747 (JT9D-7A) 200B 736000 12200 
Boeing 757 (RBII-535E4) 200 240000 7100 
Boeing 767 (CF6-80A) 200 300000 6700 
Boeing 767 (JT9D-7R4D) 200ER 351000 9100 
Boeing 747 (PW4256) 400 496000 11200 
Boeing 747 (JTgD-7A) 200B 785000 14400 
DC 9 (JTSD) 30 100000 9500 
DC 10 (CF6-6D) 10 400000 12700 
DC 10 (CF6-50C) 30 555000 15300 
MD (JTSD-217) 82 149500 9400 
L I011 (RB211-22B) 385-I 403000 10400 
Airbus (CFM56-5A1) 320  10100 
Airbus 319 100  9200 
Airbus 321 200  8900 
Airbus 319 100s  8800 
Canadair (CF34-3B1) 200LR  6900 
Canadair (CF34-8C1) 700ER  5600 
Canadair (CF34-8C5) 900  6800 
Embraer  145  6900 
Embraer Brasilia (PW118) 120  5400 
Learjet Business jet 30  5550 
Reference:- FAA concepts (AC 150/5325-4B). 
 

Table (2):- Airplane classification according to their weights. 
Small airplanes with less than 10 passenger seats Runway Length,ft 

To accommodate 75 percent of these small airplanes 2,480 feet 
To accommodate 95 percent of these small airplanes 3,030 feet 
To accommodate 100 percent of these small airplanes 3,600 feet 

Small airplanes with 10 or more passenger seats 3,600 feet 
Reference: FAA concepts (AC 150/5325-4B). 
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Model Validation 

To test the validity of the developed model outputs, it is necessary to solve 
the same example indicated in this research as a typical model input and output 
interferences by traditional (FAA) method using the values listed in tables (1), and 
(2) which they were drawn from the charts adopted by Advisory Circular (AC 
150/5325-4B). The results were then compared to see if there is a significant 
difference between the two results or not. 

From table (1), to determine the basic takeoff runway length for Boeing 767 
aircraft of type (JT9D-7R4D) with series 200ER having maximum takeoff weight, 
351000 lb is 9100 ft, which is identical to the value appeared in the computer 
model output. This comparison led to the fact that the computer model is working 
properly and is valid to use as a user friend tool for computing the runway length 
necessary for airport design. 

 
Discussion and Recommendation 

The developed computer program (RUNWLD) predicts the planned and basic 
runway lengths for various mix of airplanes anticipated to use a proposed airports. 

The developed program adopts the Federal Aviation Administration (FAA) 
methodology. This method uses charts and tables to complete the determination of the 
runway length. These charts and tables are not available every where and in any time, 
therefore the developed program (RUNWLD) is easy tool and user friend, in addition to 
that it save time while getting results comparing to the traditional (FAA) method. 
(RUNWLD) may run on any available computer because of its small size and no need of 
high technology computers.  

Development of this computer program is necessary to model other important 
design factors for any proposed planned airport, for example, the design of taxiways, 
aprons, and terminals. Recommendation required for developing and extending the 
validity of the model, considering a wide range of model applications is also necessary. 

It is recommended for future development to simulate more types and sizes of 
aircraft rather than collected in this research tables. 
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 الخلاصة
 قابلية التحمل القصوى للاسس ر الرجعي للخطأ لايجاديهدف هذا البحث الى استكشاف امكانية استخدام الشبكات العصبية بتقنية الانتشا

 حالة لفحوص تحميل على اسس بابعاد حقيقية واخرى 97قاعدة بيانات شملت ما مجموعه  .الضحلة المقامة على الترب غير المتماسكة
قابلية العوامل ذات التأثير الأكبر على  التالية يمكن اعتبارها من الخمسةالعوامل  .لبناء واثبات نماذج الشبكات العصبيةنماذج صغيرة ، ل

الكثافة ،نسبة الطول الى عرض الاساس، عمق الطمر للاساس، عرض الاساس وقد اعتبرت كمعطيات للنموذج وتشمل التحمل القصوى
اء تقييم شامل تم اجر.  نتيجة النموذجي هقابلية التحمل القصوى، في حين إن الجافة او المغمورة وزاوية الاحتكاك الداخلي للتربة 

وقد اظهرت النتائج فاعلية النموذج في ايجاد قابلية . للنموذج باستخدام معامل الارتباط، جذر معدل مربع الخطأ، و معدل الخطأ المطلق
ة تم مقارنة النموذج مع اكثر المعادلات المستخدمة شيوعأ لايجاد قابلية التحمل القصوى وقد اظهرت النتائج افضلي. التحمل القصوى

    .النموذج على تلك النظريات
 
 

Abstract: 

This study explores the potential of back propagation neural networks (BPNN) computing 
paradigm to predict the ultimate bearing capacity of shallow foundations on cohesionless 
soils. The data from 97 load tests on footings (with sizes corresponding to those of real 
footings and smaller sized model footings) were used to train and validate the model. Five 
parameters are considered to have the most significant impact on the magnitude of 
ultimate bearing capacity of shallow foundations on cohesionless soil and are thus used as 
the model inputs. These include the width of the footing, depth of embedment, length to 
width ratio, dry or submerge unit weight and angle of internal friction of the soil. The 
model output is the ultimate bearing capacity. Performance of the model was 
comprehensively evaluated. The values of the performance evaluation measures such as 
coefficient of correlation, root mean square error, mean absolute error reveal that the 
model can be effectively used for the bearing capacity prediction. BPNN model is 
compared with the values predicted by most commonly used bearing capacity theories. 
The results indicate that the model perform better than the theoretical methods.  
 
KEYWORDS: Ultimate bearing capacity; Shallow foundations; cohesionless soil; back 
propagation neural network (BPNN); prediction 
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1. Introduction: 
Every foundation design requires satisfying two major criteria: ultimate bearing capacity and 
limiting settlement of foundations [1]. Of these two criteria, the ultimate bearing capacity is 
governed by shearing strength of the soil and is estimated by the theories of Terzaghi [2], 
Meyerhof [3], Vesic [4] and others. The basis for most of the bearing capacity theories is the limit 
equilibrium method. The bearing capacities thus obtained are validated through laboratory studies 
by numerous researchers. However, the experimental researches are generally carried out on 
smaller sized models, which are highly scaled down models compared to real footings. 
Consequently, many researchers (e.g., [5–8]) have cautioned that one should be very careful 
when extrapolating findings of experiments conducted on small footings that have a width of a 
few inches, to the large sized footings. The reason for this is attributed to the increase in shearing 
strain along the slip line with the increase in width of the foundation and the ratio of mean grain 
size of the soil and the footing width [9]. The scale effect due to particle size becomes 
insignificant when the ratio of mean grain size and the width of footing is less than a certain limit, 
depending on the type of the soil [10]. For large-scale foundations on dense sand, shearing strains 
show considerable variation along the slip line and the average mobilized angle of shearing 
resistance along the slip line is smaller than the maximum value of the angle of shearing 
resistance (φpmax) obtained by plane strain shear tests. Therefore, the bearing capacity formula 
generally over estimates the bearing capacities of actual foundations on dense sand, if φpmax is 
used [11].. Hence, an alternative method is required that provides better estimates of bearing 
capacity.  
 
During the last two decades several researchers have developed effective modeling tools using 
Neural Networks (NNs) approach. NNs have been applied to many geotechnical engineering 
problems, including the prediction of the bearing capacity of piles, settlement predictions, 
liquefaction and slope stability [12]. This indicates that NNs can be used for both prediction and 
forecasting of events. The major advantage of NNs is that they can be updated easily as and when 
new data become available that eliminates the need for a specialist to reanalyze the old and new 
data, update the old design aids or equations and/or propose new equations [13]. 
 
This paper demonstrates the applicability back propagation neural network algorithm, in 
developing an effective model for predicting the ultimate bearing capacity of shallow foundations 
on cohesionless soils, and to undertake a comparative study with the commonly used bearing 
capacity theories. The database, which consists of load test results of large-scale footings and 
smaller sized model footings, is used to develop and verify the model. The performance of the 
model is then compared with the most commonly used bearing capacity theories. 
 
2. NEURAL NETWORKS (NN) 
 
NN is a computational tool, which attempts to simulate the architecture and internal operational 
features of the human brain and nervous system [14]. Three or more layers, which includes an 
input layer, an output layer and a number of hidden layers in which neurons are connected to each 
other with modifiable weighted interconnections (Fig. 1), form NN architectures. Each neuron 
has an associated transfer function, which describes how the weighted sum of its inputs is 
converted to the results into an output value. Each hidden or output neuron receives a number of 
weighted input signals from each of the units of the preceding layer and generates only one 
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output value (Fig. 2). This NN architecture is commonly referred to as a fully interconnected 
feed-forward multi-layer perceptron. In addition, there is also a bias, which is only connected to 
neurons in the hidden and output layers with modifiable weighted connections. The number of 
neurons in each layer may vary depending on the problem. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. A typical MLP neural network. 
 
 

 
 
 
 
 
 
 
 
 

Fig. 2. The structure of an artificial neuron. 
The most widely used training algorithm for multilayered feed-forward networks is perhaps the 
back-propagation (BP) algorithm [see, for instance, [15, 16] ]. The BP algorithm basically 
involves two phases. One is the forward phase where the activations are propagated from the 
input to the output layer. The second is the backward phase where the error between the observed 
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actual value and the desired nominal value in the output layer is propagated backwards in order to 
modify the weights and bias values. Before training a feed work network, the inputs and the 
outputs of training and testing sets must be initialized. In the forward phase, the weighted sum of 
input components is calculated as  

ji

n

1i
ijj biasxwnet += ∑

=
        (1) 

where netj is the weighted sum of the jth neuron for the input received from the preceding layer 
with n neurons, wij isthe weight between the jth neuron and the ith neuron in the preceding layer, 
xi is the output of the ith neuron in the preceding layer. The output of the jth neuron outj is 
calculated with a sigmoid function as follows: 

)net(jj je
)net(fout −+

==
1

1          (2) 

The training of the network is achieved by adjusting the weights and is carried out through a large 
number of training sets and training cycles. The goal of the training procedure is to find the 
optimal set of weights, which would produce the right output for any input in the ideal case. 
Training the weights of the network is iteratively adjusted to capture the relationship between the 
input and output patterns. The training of the network is accomplished by adjusting the weights 
and is carried out through a large number of training sets and training iterations. The goal of the 
learning procedure is to find the optimal set of weights, which in the ideal case would produce the 
right output for any input. The output of the network is compared with a desired response to 
produce an error. The performance of the MLP is measured in terms of a desired signal and the 
criterion for convergence.  
 
In this study, a computer program has been developed and performed under EXCEL worksheet. 
The back-propagation learning algorithm has been used in feed-forward with one hidden-layer, 
back propagation algorithm (BP), as one of the most famous training algorithms for the multi-
layer perceptron (MLP), is a gradient descent technique to minimize the error E for a particular 
training pattern, For adjusting the weight (wij) from the ith input unit to the jth output, in the 
batched mode variant the descent is based on the gradient 
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The gradient gives the direction of error E, The parameters ε and α are the learning rate and 
momentum term, respectively.  
 
3. DEVELOPMENT OF MODEL FOR ULTIMATE BEARING CAPACITY 
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One of the more important steps in the model development for the estimation of bearing capacity 
of shallow foundations is identification of parameters that affect the bearing capacity, for which 
some of the traditional bearing capacity methods [2–4, 17] are examined. Despite the fact that the 
bearing capacity values obtained through these methods differ considerably, the basic form of 
equation is the same for all the methods, which is as follows for foundations in cohesionless soil: 
 

γγγγγ dSNB.dSDNq qqqu 50+=         (5) 
where B – width of foundation, D – depth of foundation, γ – unit weight of sand (below and 
above the foundation level), Nq, Nγ – bearing capacity factors, Sq , Sγ – shape factors and  
dq, dγ–depth factors. Though various researchers propose different equations for the computation 
of these factors they primarily depend on the angle of shearing resistance of the sand and the 
geometry of the foundation. It is clear from the above that the bearing capacity of foundation 
depends on a considerable number of physical parameters of the foundation and the soil in which 
the foundation is embedded. Among the parameters related to the foundation, the main factors 
affecting the bearing capacity are its width (least lateral dimension, B), length of footing (L), 
shape (square, rectangular and circular) and depth of embedment (D). The depth of foundation 
has the greatest effect on the bearing capacity of all the physical properties of the foundation [6]. 
The main parameters in regard to the soil (sand) 
are its angle of shearing resistance and the unit weights from above and below the water table, if 
present. There are some other factors such as compressibility and thickness of the soil layer 
beneath the foundation that contribute to a lesser degree. Of all the properties of a soil, the angle 
of shearing resistance, φ , has greatest influence on the bearing capacity, which increases with the 
relative density of the soil. The bearing capacity is directly proportional to the unit weight of the 
soil and is influenced by the location of water table.  
 
The effect of compressibility is small, except for loose densities, and is generally less   important 
in bearing capacity computation [6]. Moreover, there are insufficient data to consider 
compressibility as well as thickness of soil stratum. Therefore they are not considered explicitly 
in this study. Further, the recent study by Foye et al. [18], based on reliability analysis of the 
design of foundations identified B, L, D, γ and φ as the important parameters that affect bearing 
capacity, and also discussed the degree of influence of these parameters on Nγ, Sγ, dγ. Based on 
the above, the five input parameters used for the model development in this study are width of 
footing (B), depth of footing (D), footing geometry (L/B), unit weight of sand (γ) and angle of 
shearing resistance (φ). Ultimate bearing capacity (qu) is the single output variable. 
 
n The data used for model development 
The data used for calibrating and validating the model were collected from literature, which 
include load test data on real sized foundations, as well as the corresponding information 
regarding the footing and soil. The data base thus developed comprises a total of 97 data sets, 
which consists of results of square, rectangular and strip footings of different sizes tested in sand 
beds of various densities. To enhance the performance of the model, the data used are more 
evenly distributed (i.e., the number of data for large sized footings and smaller sized models are 
equal). Of the 97 data sets, 47 are from load tests on large-scale footings and 50 are from smaller 
sized model footings. Of the 47 large-scale footing data, 24 were reported by Muhs and WeiB 
[19], 11 by WeiB [20], 5 by Muhs et al. [21], 2 by Muhs and WeiB [22], 5 by Briaud and 
Gibbens [23]. The experimental results of smaller scale model footings were reported by Gandhi 
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[24]. The data used are presented in Table 1. The large-scale tests at the test area of DEGEBO, 
Berlin were conducted in a submerged condition and hence submerged unit weights are used for 
these tests. The angle of shearing resistance as reported by the respective authors of the paper are 
adopted in the analysis, despite the mobilized angle of shearing resistance at failure for the 
axisymmetric and plain strain conditions are different. However, the difference in the angle of 
shearing resistance between these two conditions is not more than 10%. Moreover, in the case of 
laboratory model tests the angles of shearing resistance used are obtained from the direct shear 
tests conducted at very low normal stresses. Thus, the effect of dilation is also included. In the 
case of large-scale footings the ultimate load is defined as the load corresponding to the point 
where the slope of the load settlement curve is a minimum and for smaller size model footings, it 
is defined as the load corresponding to the point of break of the load settlement curve in a log–log 
plot. The available data are divided into two sets: training and validation. Eighty percent (i.e., 78) 
of the data are used for calibration and 20% (19) are used for validation. The representative set of 
patterns for the training phase has been selected in such a way that it contains all the patterns 
including the maximum and minimum values of all the input and output data. In the present 
study, the available data are randomly divided into training and validation sets in such a way that 
they are representative of same statistical population. Once training has been successfully 
accomplished, the performance of the model is tested.  
 
n NN model development 

The basic strategy for developing a neural-based model of material behavior is to train a 
neural network on the results of a series of experiments on material. If the experimental results 
contain the relevant information about the material behavior, then the trained neural network 
would contain sufficient information about the material behavior to qualify as a material model. 
Such a trained neural network not only would be able to reproduce the experimental results it was 
trained on, but through its generalization capability should be able to approximate the results of 
other experiments [25]. 
 
The feed-forward multilayer perceptron (MLP) is used in the present study; the description of 
which can be found in many publications [26,27]. A back propagation MLP with one hidden 
layer has proven to be capable of providing accurate approximation of any continuous function 
provided there are sufficient hidden nodes [28]. Hence, one hidden layer is used for the present 
study. As there are five input variables and one output variable, five nodes in the input layer and 
one node in the output layer are used. Further, NNs are very sensitive to the number of nodes in 
the hidden layer. Too many neurons in the hidden layer can lead to over fitting, i.e., the training 
data will be well modeled and the sum of the squared errors will be small, but the network will be 
modeling the noise in the data as well as the trends. Therefore, the network will not generalize 
well on the testing data. A common heuristic approach to avoid over fitting is early stopping. This 
approach involves monitoring the generalization error and stopping training when the minimum 
validation error is observed. However, some care is needed when to stop, since the validation 
error surface may have local minima or long flat regions preceding a steep drop-off [29]. 

Table 1 The data used for developing the model 
Case No. Source B (m) D (m) L/B γd or γ/ (kN/m3) φ (deg) qu (kPa) 

1 Muhs et al. [21] 0.6 0.3 2 9.85 34.9 270 
2   0.6 0 2 10.2 37.7 200 
3   0.6 0.3 2 10.2 37.7 570 
4   0.6 0 2 10.85 44.8 860 
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5   0.6 0.3 2 10.85 44.8 1760 
6 WeiB [20] 0.5 0 1 10.2 37.7 154 
7   0.5 0 1 10.2 37.7 165 
8   0.5 0 2 10.2 37.7 203 
9   0.5 0 2 10.2 37.7 195 

10   0.5 0 3 10.2 37.7 214 
11   0.52 0 3.85 10.2 37.7 186 
12   0.5 0.3 1 10.2 37.7 681 
13   0.5 0.3 2 10.2 37.7 542 
14   0.5 0.3 2 10.2 37.7 530 
15   0.5 0.3 3 10.2 37.7 402 
16   0.52 0.3 3.85 10.2 37.7 413 
17 Muhs and WeiB [19] 0.5 0 1 11.7 37 111 
18   0.5 0 1 11.7 37 132 
19   0.5 0 2 11.7 37 143 
20   0.5 0.013 1 11.7 37 137 
21   0.5 0.029 4 11.7 37 109 
22   0.5 0.127 4 11.7 37 187 
23   0.5 0.3 1 11.7 37 406 
24   0.5 0.3 1 11.7 37 446 
25   0.5 0.3 4 11.7 37 322 
26   0.5 0.5 2 11.7 37 565 
27   0.5 0.5 4 11.7 37 425 
28   0.5 0 1 12.41 44 782 
29   0.5 0 4 12.41 44 797 
30   0.5 0.3 1 12.41 44 1940 
31   0.5 0.3 1 12.41 44 2266 
32   0.5 0.5 2 12.41 44 2847 
33   0.5 0.5 4 12.41 44 2033 
34   0.5 0.49 4 12.27 42 1492 
35   0.5 0 1 11.77 37 123 
36   0.5 0 2 11.77 37 134 
37   0.5 0.3 1 11.77 37 370 
38   0.5 0.5 2 11.77 37 464 
39   0.5 0 4 12 40 461 
40   0.5 0.5 4 12 40 1140 
41 Muhs and WeiB [22] 1 0.2 3 11.97 39 710 
42   1 0 3 11.93 40 630 
43 Briaud and Gibbens [23]  0.991 0.711 1 15.8 32 1773.7 
44   3.004 0.762 1 15.8 32 1019.4 
45   2.489 0.762 1 15.8 32 1158 
46   1.492 0.762 1 15.8 32 1540 
47   3.016 0.889 1 15.8 32 1161.2 
48 Gandhi [24] 0.0585 0.029 5.95 15.7 34 58.5 
49   0.0585 0.058 5.95 15.7 34 70.91 
50   0.0585 0.029 5.95 16.1 37 82.5 
51   0.0585 0.058 5.95 16.1 37 98.93 
52   0.0585 0.029 5.95 16.5 39.5 121.5 
53   0.0585 0.058 5.95 16.5 39.5 142.9 
54   0.0585 0.029 5.95 16.8 41.5 157.5 

Table 1 (continued) 
Case No. Source B (m) D (m) L/B γd or γ/ (kN/m3) φ (deg) qu (kPa) 

55   0.0585 0.058 5.95 16.8 41.5 184.9 
56   0.0585 0.029 5.95 17.1 42.5 180.5 
57   0.0585 0.058 5.95 17.1 42.5 211 
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58   0.094 0.047 6 15.7 34 74.7 
59   0.094 0.094 6 15.7 34 91.5 
60   0.094 0.047 6 16.1 37 104.8 
61   0.094 0.094 6 16.1 37 127.5 
62   0.094 0.047 6 16.5 39.5 155.8 
63   0.094 0.094 6 16.5 39.5 185.6 
64   0.094 0.047 6 16.8 41.5 206.8 
65   0.094 0.094 6 16.8 41.5 244.6 
66   0.094 0.047 6 17.1 42.5 235.6 
67   0.094 0.094 6 17.1 42.5 279.6 
68   0.152 0.075 5.95 15.7 34 98.2 
69   0.152 0.15 5.95 15.7 34 122.3 
70   0.152 0.075 5.95 16.1 37 143.3 
71   0.152 0.15 5.95 16.1 37 176.4 
72   0.152 0.075 5.95 16.5 39.5 211.2 
73   0.152 0.15 5.95 16.5 39.5 254.5 
74   0.152 0.075 5.95 16.8 41.5 285.3 
75   0.152 0.15 5.95 16.8 41.5 342.5 
76   0.152 0.075 5.95 17.1 42.5 335.3 
77   0.152 0.15 5.95 17.1 42.5 400.6 
78   0.094 0.047 1 15.7 34 67.7 
79   0.094 0.094 1 15.7 34 90.5 
80   0.094 0.047 1 16.1 37 98.8 
81   0.094 0.094 1 16.1 37 131.5 
82   0.094 0.047 1 16.5 39.5 147.8 
83   0.094 0.094 1 16.5 39.5 191.6 
84   0.094 0.047 1 16.8 41.5 196.8 
85   0.094 0.094 1 16.8 41.5 253.6 
86   0.094 0.047 1 17.1 42.5 228.8 
87   0.094 0.094 1 17.1 42.5 295.6 
88   0.152 0.075 1 15.7 34 91.2 
89   0.152 0.15 1 15.7 34 124.4 
90   0.152 0.075 1 16.1 37 135.2 
91   0.152 0.15 1 16.1 37 182.4 
92   0.152 0.075 1 16.5 39.5 201.2 
93   0.152 0.15 1 16.5 39.5 264.5 
94   0.152 0.075 1 16.8 41.5 276.3 
95   0.152 0.15 1 16.8 41.5 361.5 
96   0.152 0.075 1 17.1 42.5 325.3 
97   0.152 0.15 1 17.1 42.5 423.6 

The steps for developing NN models, as outlined by Maier and Dandy [30], are used as a guide in 
this work. These include the determination of model inputs and outputs, division and 
preprocessing of the available data, the determination of appropriate network architecture, 
optimization of the connection weights training, stopping criteria, and model validation. In this 
study, the general strategy adopted for finding the optimal parameters that control the training 
process is as follows. 
For each trial number of hidden layer nodes, random initial weights and biases are generated. The 
neural network is then trained with different combinations of momentum terms and learning rates 
in an attempt to identify the NN model that performs best on the validation data. The momentum 
terms used in this study are 0.005, 0.01, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 0.95 and 0.99, whereas the 
learning rates used are 0.05, 0.1, 0.15, 0.2, 0.4, 0.6, 0.8, 0.9 and 0.95. Since the back-propagation 
training algorithm uses a first-order gradient descent technique to adjust the connection weights, 
it may get trapped in a local minimum if the initial starting point in weight space is unfavorable. 
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Consequently, the model that has the optimum momentum term and learning rate is retrained a 
number of times with different initial weights and biases until no further improvement occurs. 
 
n Model evaluation 
Quantitative assessments of the degree to which the model simulations match the actual output 
are used to provide an evaluation of the model’s predictive abilities. As a single evaluation 
measure is not available [31], a multi criteria assessment was performed in the current study with 
various goodness-of-fit statistics. These measures can be grouped into two types: relative and 
absolute. Relative goodness-of-fit measures are non-dimensional indices, which provide a relative 
comparison of the performance of one model against another. In contrast, absolute goodness-of-
fit statistics are measured in the units of ultimate bearing capacity. The criteria that are employed 
for model evaluation are the coefficient of correlation (R), root-mean-square error (RMSE) 
between the actual and predicted values and the mean absolute error (MAE). The definition of 
these evaluation criteria is provided in Table 2. 

Table 2 Performance evaluation criteria 
Evaluation criteria Definition 
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Note:  m
iy and c

iy  are the measured and computed ultimate bearing capacity values, respectively, 
m
iy  and c

iy  are the mean of the measured and computed ultimate bearing capacity values 

corresponding to n patterns. Smith [32] suggested the following guide for the value of (r) between 
0.0 and 1.0: 

• 8.0≥r       strong correlation exists between two sets of variables; 

• 8.02.0 〈〈 r   correlation exists between the two sets of variables; and 

• 2.0≤r       weak correlation exists between the two sets of variables. 
The RMSE is the most popular measure of error and has the advantage that large errors receive 
much greater attention than small errors. In contrast with RMSE, MAE eliminates the emphasis 
given to large errors. Both RMSE and MAE are desirable when the evaluated output data are 
smooth or continuous. The optimum model is a model with a highest value of (R) and a lowest 
value of (RMSE) and (MAE). 
4. TRADITIONAL METHODS FOR ULTIMATE BEARING CAPACITY PREDICTION 
 
Many theoretical methods for the prediction of ultimate bearing capacity of shallow foundations 
are presented in the literature. Among these, three are chosen for the purpose of assessing the 
relative performance of NN model. These include the methods proposed by Meyerhof [3], Vesic 
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[4] and Hansen [33]. These methods are used for comparison as they are commonly used for 
estimating the ultimate bearing capacity.  
 

5. Results and Discussion 
 
The impact of the number of hidden nodes, learning rate and momentum term on NN 
performance is shown in Figures 3,4, and 5 respectively. Fig. 3 shows that the network with three 
hidden layer nodes has the lowest prediction error. Figures 4 and 5 show that the best prediction 
was obtained with a momentum value of 0.95 and learning rate 0.8 respectively. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Performance of neural network models with different hidden layer nodes 
 (learning rate = 0.2 and momentum term = 0.8) 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 

Fig.5  Effect of various momentum terms on 
neural network performance (hidden 
nodes = 3 and learning rate = 0.2) 

 Fig. 6 Effect of various learning rates on 
neural network performance (hidden 
nodes = 3 and momentum term = 0.8) 
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The predictive performance of the optimal neural network model (i.e., three layer nodes, 
momentum value of 0.95, and learning rate of 0.8) is summarized in Table 3. The results indicate 
that the NN model performs well, with an R of 0.939, an RMSE of 158.67 kPa, and an MAE of 
86.73 kPa for the validation set.  

 
Table (3) Neural Network Results 

Data set R RMSE (MPa) MAE (MPa) 
All data 0.983 101.23 59.74 
Training 0.990 81.31 53.17 
Validation 0.939 158.67 86.73 

 
Comparisons of the results predicted using the NN and the measured values of bearing capacity 
are presented in Fig. 7, which shows that the NN model performs reasonably for all data, Training 
and Validation data used in this work. 
 
The values of performance measures off NN model and bearing capacity theories for all data set 
are summarized in Table 4. The RMSE, and MAE values for the NN model are less than those for 
the traditional theories chosen in this work, while R are higher. Comparisons of the predicted 
values by traditional theories and the measured values of bearing capacity are presented in Fig. 8, 
which show that R2 are higher for NN model than those for traditional theories. This indicates 
that the performance of NN model is better than the theoretical methods. 
 

Table (4) Comparison of performance measures in model predicted bearing capacity values and 
traditional theories for all data set  

Performance measures NN Model Terzaghi  Meyerhof Hansen  
R 0.983 0.902 0.939 0.942 
RMSE (kPa) 101.23 340.38 188.26 295.743 
MAE (kPa) 59.74 153.51 100.66 148.514 

 

6-Conclusions 
 
This paper deals with the problem of prediction of the ultimate bearing capacity of shallow 
foundations on cohesionless soil. The results indicate that the NN model is able to predict well 
the ultimate bearing capacity of shallow foundations. The model performs better than the 
theoretical methods. This was evidenced by the performance measures used for evaluating the 
models. Also, the advantage of these soft computing techniques is that they can be updated easily, 
as and when new data become available avoiding expertise and time needed to update the old 
design aid or equation and/or propose a new equation. 
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Fig. 7 Comparison of Predicted and Measured Bearing Capacity for 

(a) All data (b) Training data (c) Validation data 

R2 = 0.963 
No of data = 97 

(b) 

R2 = 0.979 
No of data = 78 

(a) 

R2 = 0.845 
No of data = 19 

(c) 



IJCE-12th  ISSUE                                                                               September-2008 
 

174 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 8 Comparison of Measured and Predicted Bearing capacity by  

(a) Terzaghi (b) Meyerhof (c) Hansen theories  
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