Authors

Abstract

ABSTRACT An applied hydrological models were performed to model the rainfall-runoff relationship for Upper Adhaim River Basin. Three lumped integral models (hydrologic models) based upon the concept of the unit hydrograph were applied to analyze the rainfall-runoff relationship on a daily basis. These models are: the Simple Linear Model (SLM), the Linear Variable Gain Factor Model (LVGFM), and the Non-Linear Model (NLM). Five performance evaluation criteria have been used in this study. The application results of the (SLM) model showed a weak rainfall-runoff relationship. It was demonstrated that the linear assumption is valid only for the first four antecedent days. A considerable non-linear rainfall-runoff relationship was clearly observed from the results of (LVGFM) and the (NLM) models. Both models were satisfactorily identified at system memory of (17) antecedent days. However, the (LVGFM) was slightly superior to the (NLM). The (LVGFM) identified at system memory of seventeen antecedent days was used to simulate runoff flows. The simulation results show an acceptable applicability for the (LVGFM) in terms of simulating runoff events in time of its occurrence and volumetric fitness. The water budget for Upper Adhaim River Basin showed that an average of 73.4% from annual rainfall was evapotranspired, 8.0% was infiltrated and 18.6% was observed as direct runoff.