Iraqi Journal of Civil Engineering
Login
Iraqi Journal of Civil Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
    • Reviewers of IJCE
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Journal Funding Sources
    • AI Usage and Disclosure Policy
    • Announcements
    • Contact

Search Results for A. Mohammed

Article
Assessment of Urban Environment before and During COVID-19 Pandemic in Holy Cities Using Landsat Data: A Case Study of Kerbala, Iraq

Haidar R. Mohammed ., Marawan Mohammed Hamid ., Muthanna M. Albayati .

Pages: 59-65

PDF Full Text
Abstract

Recently, COVID-19 pandemic has swept the world left many victims as well as heavy casualties in the global economic system. As a result, governments have applied some necessary actions such as curfew and restricted mobility between cities, in order to control the spread of COVID-19 pandemic. However, these actions can decrease the traffic congestions within megacities leading to cleaner air and lower temperature. On the other hand, these actions have negative impacts on tourism in congested cities like Karbala and Najaf.Nowadays, urban climatic phenomena within holy cities have attracted researchers . The aim of this study is the evaluation of Urban Climate in term of temperature before and during COVID-19 pandemic period by using Landsat images and GIS techniques. Final findings showed a difference between Land surface temperature before and during COVID-19, which reached about 9 C° within built-up areas and bare lands. While this difference showed a relatively slight decrease within vegetated areas and waterbodies reached about 2 C°. This indicated that built-up areas and bare lands have been mainly affected by governmental restrictions during COVID-19 compared to other areas. Our analysis indicated that the temperature of the surface in urban areas has decreased during COVID-19 compared to the period before COVID-19. The proposed method can pave the way for planners and decision-makers to evaluate other holy cities in terms of the environment and recent disasters like the COVID-19 pandemic    

Article
Production of Self-Compacting Concrete by Using Fine Aggregate NotConforming Local Specifications

Zainab Mohammed Ali Hussian, Mohammed Mosleh Salman

Pages: 66-88

PDF Full Text
Abstract

AbstractThis study aims to investigate the properties of SCC produced by locally availablematerials , and attempts have been made to increase the range of grading of fineaggregate, with fineness modulus ranging from (1.5 to 4.1) , and to study the effect of themaximum size of coarse aggregate . It also aims to study the influence of High ReactivityMetakaolin (HRM) as a partial replacement by weight of cement on the properties of freshand hardened SCC, 24 different mixes of SCC are prepared .8 mixes are considered asReference mixes which are used for comparison purposes. To determine the workability,different test methods were adopted such as slump flow, V-funnel, and L-box tests. Whenfineness modulus of fine aggregate and maximum size of coarse aggregate increase,flowability, passing ability and segregation resistance decrease as compared with smallmaximum size of aggregate and other fineness modulus. Further more, the inclusion of10% HRM as a partial replacement by weight of cement leads to decrease flow ability andincrease of viscosity. The fineness modulus (3.1) of fine aggregate gives better resultsthan other fineness modulus. The results obtained from this study, also show that it ispossible to produce SCC from local available materials which satisfy the requirement ofthis type of concrete. Moreover, the results show the possibility of using different gradingof fine aggregate with fineness modulus ranging from (1.5 to 4.1) and the effect ofchange in fineness modulus is not significant on hardened concrete properties , while it ismore significant on fresh concrete properties .

Article
Behaviour of Self-Consolidating Concrete Two Way Slabs Under Uniform Loading

Dr. Mohammed Mohammed Rasheed, Nibras Nizar Abduhameed

Pages: 50-61

PDF Full Text
Abstract

An experimental investigation was conducted to study the strength, behaviour and deflection characteristics of two way slabs made with both self-consolidating concrete (SCC) and conventional concrete (CC). Six concrete slabs were tested to failure under simply supported uniform by distributed loading conditions. The variables were concrete type and macro synthetic fibres ratio (0%, 0.07% and 0.14%). The performance was evaluated based on crack pattern, ultimate load, load-deflection response and failure mode. The results showed that the ultimate strength of SCC slabs was larger than that of their CC counterparts. The results also showed an improvement of the behaviour and strength of slabs by adding the synthetic fibres.

Article
Producing of eco-friendly lightweight concrete using waste polystyrene particles as aggregates with adding waste plastic

Saad Mohammed, Abdulkader Al-Hadithi, Shamil Ahmed

Pages: 45-56

PDF Full Text
Abstract

This research includes studying the possibility of producing a new kind of No-fines concrete by replacing granules of coarse aggregates with grains results from the fragmentation of industrial waste of polystyrene. This replacing were with different volumetric proportions of coarse aggregate, and theses volumetric ratios were equal to (5%, 10%, 15% and 25%). Waste plastic fibers (WPFs) resulting from cutting of soft drinks bottles were added for strengthening this new kind of concrete. Mixing ratio was equal to (1:5) (cement: coarse aggregate) by weight. One reference mix was produced for comparative purpose. Compressive strength, flexural strength and density tests were conducted, it was examined three samples of each examination and taking the average. Compressive strength values of the new sustainable concrete were ranged from 10 MPa to 12.4 MPa at age of test equal to 28 days, while the average value of the density of this concrete at the same age reaches 1930 kg/m3. This average value of modulus of rupture was equal to 2.36 MPa at 28-day age test.

Article
Effect of High Temperature on Compressive Strength of StructuralLightweight and Normal Weight Concretes

Mahmoud Kh. Mohammed

Pages: 59-74

PDF Full Text
Abstract

Abstract:This research studies the effect of high temperature which is reached to 600 °C onstructural lightweight and normal weight concrete. Lightweight concrete mix designedaccording to ACI committee 211-2-82 with mix proportion 1:1.12 :3.35 by volume .Thewc ratio equal to 0.5 by weight and cement content 550 kgm3. Mix proportions ofnormal weight concrete were 1:2:3 by weight with cement content 400 kgm3 and samewc. The design compressive strength at 28 days of normal weight concrete (NWC) andlightweight concrete (LWC) were 34.7 MPa and 22.62 MPa respectively. Compressivestrength tests were performed on 100 mm cubes exposed to high temperature 100,200,400and 600 °C. The normal weight concrete and light weight concrete test specimens wereexposed to high temperature for 10 minute suddenly at the required degree. Moreover,light weight concrete test specimens tested after graduate exposure to high temperaturereaching to the required degree with and without drying to examine the effect of moisturecontent.The results indicated that the structural lightweight concrete exhibits approximatelysimilar compressive strength loss compared to normal weight concrete up to 600 °C at 28days in graduate exposure .The percentage of reduction on compressive strength was30% in lightweight concrete compared to 28% in normal weight concrete at 600 °C .Insudden exposure to high temperature ,the opposite behavior was noticed .The percentageof reduction on compressive strength was 64.4% in lightweight concrete at 600°C .Drying of lightweight concrete specimens before graduate exposure to high temperaturessignificantly reduce the loss of compressive strength.

Article
Evaluating Traffic Operation for Multilane Highway (Ramadi – Fallujah) Highway as Case Study

Hamid A. Awad, Hameed A. Mohammed

Pages: 120-134

PDF Full Text
Abstract

Multilane highways typically are located in suburban communities, leading into central cities, or along high-volume rural corridors connecting two cities or significant activities that generate a substantial number of daily trips. The objectives of the present study include the analysis, and evaluation the level of service (LOS) on section for multilane highway in Ramadi city. The LOS multilane highway is based on density, which is calculated by dividing per lane flow by speed. The required traffic and geometrical data has been collected through field surveys on the section for multilane highway. Traffic volume data were collected manually and classified by vehicles types during each 15 minute interval. Highway Capacity Software 2000 (HCS 2000) program is used for the requirements of traffic analysis process to determine the level of service. It has concluded that the level of service on selected section for east bound is (A), and for west bound is (B).

Article
Development length of Tension Bars in Concrete Beams- Revisited

Dhiyaa hamoodi Mohammed

Pages: 26-34

PDF Full Text
Abstract

Presently development length of tension bars in reinforced concrete beams, in both codes and researches has a very wide range on the influence of major parameters. Namely, the influence of concrete compressive strength f́c affects the development length of beams by varying power values: 1/2, and 1/3. It is well known that the development length of beams is essentially based on empirical or semi empirical formulae. A total of 254 NSC and HSC tested beams available from the literature are studied in this work. These includes 154 beams without transverse reinforcement and 100 with transverse reinforcement and having a different compressive strength ranged from (16.4 – 98) MPa. The best available design method obtained from the literature leads to 43.31% increase in the coefficients of variation COV compared to the proposed design method in this work, which is essentially whose COV of 14.06%.

Article
Effect of Different Conditions of Carbon Dioxide Curing in Cement – Based Composites (On Review)

Ziyad Majeed Abed ., . Ali Attiea Jaber, Hiba O. Ghaeb ., Ali Mohammed Hasan .

Pages: 10-17

PDF Full Text
Abstract

The most concerning issue confronting the planet these days is the ascent in Carbon dioxide (CO2) levels to record levels. The cement industries are answerable to between 6-8 % of worldwide CO2 emitting. In construction sectors, researchers tried to contribute in decreasing of CO2 in atmosphere produced by industry and using that was released in air. Accelerated CO2 curing is one of the methods used to get benefit from CO2 in the air. In this paper, CO2 concentration in addition to pressure, relative humidity and period of curing all had a significant influence upon the features of Cement – Based Composites. Results showed that using CO2 curing with different and specific properties of fibers (types, quantities, circumstances and lengths) improved the most mechanical properties and enhanced durability such as: strength, stiffness, ductility, toughness, porosity, and absorption.    

Article
Experimental investigation and FEA of AlMg3-stiffened rectangular plate subjected to concentrated load

Mohammed Midhat Hasan, Mazin Yaseen Abbood

Pages: 101-109

PDF Full Text
Abstract

In this paper, AlMg3-plates are studied through experimental and numerical using finite element representation under concentrated load at the center point. The plates of (300- × 200 mm) are clamped at the shorter ends and strengthened longitudinally by one rib at the centerline and two at different spans. the stiffened plates were modeled using a 3-D 10-node tetrahedral element with a non dimensional analysis. The models were validated using the results of tests on full-size stiffened plate specimens and were subsequently used to perform the study of the parameters presented in this paper. The parameters investigated are: the maximum stress, deflection of the plate and the position of ribs. Effect of the investigated parameters on the concentrated load strength were studied within elastic range. FEA give closer results with those of experimental and these results show that the use of two parallel ribs with a 40-mm span improves the strength of the plate. Due to these results, further investigation is presented to show the optimum thickness of the ribs at the best span.

Article
Detect irregularities of master plan by comparison with land use, using GIS and remote sensing techniques for Falujah city

Muthana Mohammed A. Albayati ., Noor Hashim Hamed ., Safaa J. Al any .

Pages: 8-17

PDF Full Text
Abstract

Most of Iraqi Cities suffering from delaying of the update of Master plan, especially in the period between 1980 and 2003 the main reasons this delay are the Gulf War and the Economic Blockade. Increasing of population is the major factor causes changing in urban land use due to the human demand. These changes cause differences between master plan and real situation. To mention the spatial irregularities in Falujah City, the comparison between the master plan layers and updating land use map layers has achieved in this paper to determine the spatial change and irregularities in the city, that represent the reality of situation in case study . The changes were remarked; the areas of changes were calculated in table and thematic map were produced in our paper to illustrate the goal. This data processed using combination of GIS technique, and global positioning system GPS and geo media software.    

Article
CHEMICAL AND PHYSICAL PROPERTIES OF SOME TYPES OF CEMENT AVAILABLE IN LOCAL MARKET

Mahmoud Kh. Mohammed

Pages: 69-89

PDF Full Text
Abstract

AbstractThere is no doubt that the type and properties of cement extremely affect the general properties of produced concrete .Cement is one of the main ingredients of cement past phase in concrete. In present study chemical and physical properties of four types of Portland cement available in Iraqi local market were studied ,these types as follow : two types of ordinary Portland cement Kubaisa (Iraqi cement) and Ismnta (Jordanian cement) and the others of sulfate resisting cement Torab alsabia (Lebanese cement ) and Al-qaim (Iraqi cement).Chemical analysis of the four types of cement were conducted in Baghdad central laboratory in National Center for Constructional Laboratories and Researches (NCCLR) and Al-qaim factory laboratory .The physical tests were conducted in the concrete laboratory of Al_anbar university-college of engineering including standard cement paste ,initial and final setting and compressive strength of cement mortars.The results indicate that the local cement (Kubaisa and Al-qaim) showed better performance than imported cement (Ismnta and Torab alsabia) in most tested chemical and physical properties .Kubaisa cement showed 34.1 % , 35.5 % higher compressive strength compared with Ismnta cement at 3 and 7 day respectively and lower loss on ignition and insoluble residue . The major compounds of Kubaisa cement were nearest to those in typical cement. For sulfate resisting cement , Al-qaim cement showed 13.3 % higher compressive strength at 7 day and lower percentage of C3A (1.95%) . Torab alsabia cement exceed the limits of Iraqi standard I.O.S No.5 1984.

Article
Sustainable Development of Wadi Houran- Western Iraqi Desert

Isam Abdulhameed., Muneer Ahmed, Waleed Hamed, Emad Ghan, Rasha Naif, Rasmi. Hamad, Hasan Mutar, Muthanna Ibrahem, Abed Fayyadh, Isam Alhadeethi, Kamal ALmafrchi, Ammar Kamel, Ahmed Mohammed, Jabbar Al-Esawi

Pages: 44-53

PDF Full Text
Abstract

Wadi Houran is one of the largest valleys in Iraq. Although it is discharging billions of rainfall water over/during many years to Euphrates river, it's almost devoid of agricultural investment. The current study aims to focus on this important valley water resource and study the possibility of constructing a series of small dams to store rainfall water and planting forestry and establishing a natural reserve that is able to sustain and improve ecology system. Target area of 4000 km2 is selected in the midstream of the valley. In general, it is about one billion m3 of rainwater flowing to Euphrates River during some years with yearly average values about 400 Mm3. Four dams were constructed to store about 46 Mm3 of rainwater. It is possible to construct small-dam-series of optimal height and location to expand the rainwater harvesting and groundwater recharging. A Current study was done and aimed to establish of oases and natural reserves in order to improve climate conditions, minimize the dust and CO2, mitigation of summer high temperature and decrease the soil erosion due to torrents. This study recommended constructing 13 optimal height dams that store about 303 Mm3 of water, and increase the water surface area of reservoirs in this valley from 15 to 90 km2which leads increase the water volume that is recharging ground water from 4.7 Mm3 to 28 Mm3 per year.    

Article
Using Of Recycled Rubber Tires And Steel Lathes Waste As Fibbers To Reinforcing Concrete

Hasan Jasim Mohammed, Abbas Hadi Abbas, Muhammed Abbas Husain

Pages: 27-38

PDF Full Text
Abstract

This research paper is accomplished to study the effect of using waste fibers in properties of concrete . Steel lathe waste fibers are added by percentages of (4, 6 and 8 %) from weight of concrete and a percentages of concrete coarse aggregate are replaced by rubber tires waste fibers in a ratios of (5, 10 and 15%) by volume . Besides to that, the combined fibers are used steel lathe waste fibers by adding (4, 6 and 8 %) with constant replacing of rubber tires waste fibers of (10 %). The results showed that adding of steel lathe waste fibers in plain concrete enhances its strength under compression about (15%) and tension about (20%), while rubber tires waste reduced both of compression about (80 %) and tension about (51%) strengths .Also the compression and tension strengths are reduced (88% and 30%) respectively with using combined fibers . The dry concrete density of lathe waste fibers concrete is (2345-2365kN/m3) , the rubberized concrete density is (2130-2240kN/m3) and for combined fibers concrete density (2025-2180 kN/m3).

Article
Lane-based modeling of traffic characteristics on urban multi-lane highway in Mosul city.

Asmaa abdulrazzaq, mohammed taha

Pages: 107-117

PDF Full Text
Abstract

ABSTRACT This research models the relationship between traffic characteristics and lane position on a six-lane divided highway. Both macroscopic and microscopic models were developed to analyze speed-density, speed-flow, and flow-density relationships for each lane, using linear and nonlinear approaches. Additionally, microscopic models were created to investigate speed-spacing, speed-headway, and headway-spacing relationships. Data was gathered using video recordings and radar speed guns, and traditional methods were applied to calculate density and spacing distance, which are typically challenging to measure in the field. Microsoft Excel and SPSS ver.26 software were utilized for analysis. The coefficient of determination (R-square) and the chi-square test were employed to assess the goodness of fit for the models. The results indicated no significant differences between the predicted and observed data, demonstrating critical traffic characteristics and providing insights into vehicular and driver behavior. These models can be utilized to identify various parameters of traffic characteristics in future studies on the examined highway.

Article
Consistency and Compressibility Characteristics of contaminated Compacted Clay liners

Khalid Rassim Mahmood Al-Janabi, Basim Mohammed Abdulla

Pages: 1-8

PDF Full Text
Abstract

Processed and natural clays are widely used to construct impermeable liners in solid waste disposal landfills. The engineering properties of clay liners can be significantly affected by the leachate from the waste mass. In this study, the effect of inorganic salt solutions on consistency and compressibility characteristics of compacted clay was investigated at different concentrations. Two type of inorganic salt MnSO4 and FeCl3 are used at different concentration 2%, 5%, and 10%. The Clay used was the CL- clay (kaolinite). The result shows that the consistency limits increased as the concentration of salts increased, while the compression index (Cc) decreases as the concentration increased from 2% to 5%, after that the Cc is nearly constant. The swelling index (Ce) tends to increase slightly as the concentration of MnSO4 increased, while it decreases as the concentration of FeCl3 increased.

Article
EFFECT OF POLYMER (S.B.R.)ON SULFATE RESISTANCE OF CONCRETE

Aseel M. Mohammed, Ibrahim A. S. Al-Jumaily

Pages: 35-59

PDF Full Text
Abstract

ABSTRACT:The resistance of concrete to sulfate attack is considered as one of the important factors for concrete durability.The effect of SBR polymer on sulfate resistance of concrete is investigated. Both internal and external sulfate attack are considered.Internal sulfate attack was made by adding gypsum to raise the sulfate content of sand to that of Ramadi city soil (2.17%), while the external sulfate attack was made by adding chemical materials (MgSO4.7H2O, Na2SO4, CaCl2.2H2O, NaCl) to tap water to convert it into water similar to groundwater of Ramadi city.The laboratory tests were compressive and flexural strength, modulus of elasticity, slump, ultra-sound velocity and total percentage of sulfate after exposing to attack for different ages. It was found that the compressive strength of reinforced normal concrete (RNC) for ages (7,28,90,180) days respectively were (20,28,11.166,7) MPa, the compressive strength of polymer Portland cement concrete( PPCC) with polymer/cement ratio( P/C)=5% (PPCC5) were (21.83,32.666,12.766,8.733) MPa and for PPCC with (P/C)=10% were (24.166,35.866,15.533,11.366)MPa.While the flexural strength of RNC for different ages (7,28,90,180) respectively were (3.953,3.7,1.68,11.305) MPa, the flexural strength of PPCC5 were (4.05,5.025,2.13,1.605) MPa and for PPCC10 were (4.43,6.375,2.43,1.92) MPa.The static modulus of elasticity at age (28) days for (RNC) was (37.4) GPa , for PPCC5 was (9.7) GPa and for PPCC10 was (13.63) GPa.Slump for (RNC) was (155) mm, for PPCC5 was (142) mm and for PPCC10 was (75) mm.T he ultra-sound velocity of RNC for ages (7,28,90,180) respectively were (4.2,4.445,4.203,4.53) Km/sec , for PPCC5 were (4.36,4.646,4.53,4.176) Km/sec and for PPCC10 were (4.437,4.837,4.656,4.52) Km/sec.It was found that (PPCC10) has higher resistance to sulfate attack than (PPCC5) and (NRC). The thesis refers to necessity of polymer to improve the resistance of concrete to sulfate attack although if the sulfate percentage raise to more than (0.5) % which represents the maximum limit of sulfate percentage in I.O.S No. 45-1970.

Article
Assessment of concrete compressive strength by ultrasonic pulse velocity test

Mohammed Hmood Mohana .

Pages: 39-46

PDF Full Text
Abstract

One of the most popular non- destructive techniques is ultrasonic pulse velocity (UPV) which used in assessment of concrete properties. A statistical experimental program was carried out in the present study to establish an accurate relation between the UPV and the concrete compressive strength. The program involved testing of concrete cubes cast with specified test variables. The variables are the age and density of concrete. In this research, all the samples were tested by direct ultrasonic pulse velocity (DUPV) and surface ultrasonic pulse velocity (SUPV) to measure the wave velocity in concrete and the compressive strength for each sample. An experimental study was conducted to compare between the velocities of ultrasonic waves that transmitted along the two paths; direct and indirect. A total of more than 150 cubes having dimensions of 150 mm side were prepared to conduct both non-destructive and the compressive strength (destructive testing). The results from experimental program were used as input data in a statistical program (SPSS) to predict the best equation, which can represent the relation between the UPV (direct, indirect), and compressive strength, a linear equation is proposed for this purpose. The UPV measurement and compressive strength tests were carried out at the concrete age of 7, 28, 56 days. A relationship curves were drawn between DUPV, SUPV, compressive strength and density. The mixes composition in this study consists of ordinary Portland cement, fine sand, gravel, super-plasticizer, and water. All the specimens were under (20) Cº. The statistical analysis revealed that the possibility in evaluating the properties of the concrete by using direct and indirect wave velocities    

Article
Nonlinear Three-Dimensional Finite Element Analysis of Reinforced Concrete Dapped-End Beams

A. Mohammed

Pages: 1-16

PDF Full Text
Abstract

This paper deals with the nonlinear finite element analysis of two shear-critical concrete dapped-end beams. Reinforced concrete dapped-end beams having nominal shear span to depth ratio values of 0.56 and 0.59, concrete strength 32MPa and 34MPa, and reinforcement ratio via yield strength 2.83MPa and 7.39MPa, that failed in shear have been analyzed using the ‘ANSYS’ program. The ‘ANSYS’ model accounts for the nonlinearity, such as, post cracking tensile stiffness of the concrete, stress transfer across the cracked blocks of concrete. The concrete is modeled using ‘SOLID65’- eight-node brick element, which is capable of simulating the cracking and crushing behavior of brittle materials. The internal reinforcements have been modeled discretely using ‘LINK8’ – 3D spar element. A parametric study is also made to explain the effects of variation of some main parameters such as shear span to depth ratio, concrete compressive strength, and the parameter of main dapped-end reinforcement on the behavior of the beams. From the present modality the capability of the model to capture the critical crack regions, loads and deflections for various types of shear failures in reinforced concrete dapped-end beams have been illustrated. The parametric study shows that the beams shear strength is affected by the shear span to depth ratio, concrete compressive strength and the amount of main reinforcement.

Article
Application of Evapotranspiration Models for Al-Ramadi Irrigation Project, Al-Anbar, Iraq

mohammed waheeb, ayad Mustafa, Jumaa Al-Somaydaii

Pages: 60-68

PDF Full Text
Abstract

Since evapotranspiration typically makes up the largest portion of the terrestrial water cycle, it is one of the most crucial factors in determining how much water is available. This study evaluated four models (Penman-FAO-24(PF), Penman-Monteith -FAO-56(PM), Penman-Kimberly(PK), and Jensen-Haise (JH)) utilized frequently to calculate monthly reference crop evapotranspiration (ET_0) values for Ramadi irrigation project (fourth stage). The statistical indicators considered were the root mean square error (RMSE), Mean Absolute Error (MAE), Relative Error (RE), Correlation Coefficient (R^2) and mean bias error (MBE), models were used to estimate evapotranspiration, and by calculating evapotranspiration for Al-Ramadi city according to the climate data available to us, The (PF) model had the lowest MBE = 0.02945, greatest RMSE = 29.369, and highest R = 0.9641 values among the four models, demonstrating that it is the best. The JH model, which achieved the highest values of MBE = 0.00978 and RSME = 58.509, was the least accurate of the models.. The study's conclusions may be useful to farmers, decision-makers, and local water organizations in assessing irrigation water requirements, planning, and effective use of water resources.

Article
Time dependent behaviour of composite beams with partial interaction for different types of shear connectors

Mohammed H. Mohana

Pages: 53-64

PDF Full Text
Abstract

The structural behavior of composite steel concrete beams with long term deflection was investigated, taking in considerations several variables including degree of shear connectors 50%, 75%, 100%, and type of connectors including headed and hooked studs smooth or deformed. Five composite steel-concrete beams were tested each consist of steel section W12x35 and 300x100 concrete slabs. The composite beams were tested under uniformly distributed loads for different time interval up to 180 days. The results showed that the degree of interaction have significant influence on the long- term behavior of the composite steel concrete beam . When the degree of interaction decreased from 100% to 75% then to 50% the maximum long-term mid span deflection increased about 35.1% and 65.9% respectively at 180 days after loading. Also, the end slip increased about 67.5% and 112.4% respectively at 180 days after loading. The results showed that the type of the used shear connectors has slight influence on the long-term behavior of the composite steel concrete beams. For certain degree of interaction (75%)with using headed and hooked studs smooth or deformed the maximum long-term mid span deflection decreased about 7.1% and 11.7%at 180 days after loading, and the end slip decreased about 4.8% and 12.5% at 180 days after loading.

Article
THE EFFECT OF ADDITION OF STEEL FIBERS ON COMPRESSIVE AND TENSILE STRENGTHS OF STRUCTURAL LIGHTWEIGHT CONCRETE MADE OF BROKEN BRICKS

Mahmoud Kh. Mohammed

Pages: 120-140

PDF Full Text
Abstract

Abstract This research studies the effect of adding steel fiber in two percentage 0.5% and 1% by volume on plain structural lightweight concrete (SLWC) produced by using crushed bricks as coarse lightweight aggregates (LWA) in a lightweight concrete mix designed according to ACI committee 211-2-82 with mix proportion 1:1.12 :3.35 by volume .The wc equal to 0.5 and cement content 550 kgm3. Different tests where performed for fresh and hardened SLWC such slump test ,fresh and hardened unit weight ,compressive strength and two indirect tests of tensile strength (splitting tensile and flexural strength). The results demonstrated that the effect of addition of steel fiber was more pronounced on the tensile strength of SLWC than the compressive strength of such concrete .The maximum increase of compressive ,splitting tensile and flexural strengths at 28-days were 38.8,77.12 and 111.2 % in the SLWC containing 1% fiber. On the other hand the rate of strength gain between 3 and 28 days was constant on compressive strength of plain concrete and that containing steel fiber while this rate was clearly increase on tensile strength especially flexural strength.

Article
Influence of Curing Duration on the Ordinary and High Compressive Strength of Concrete Containing Silica Fume

Abdulnasser Mohammed Abbas ., Ahmed Sagban Saadoon .

Pages: 23-29

PDF Full Text
Abstract

The Impact of silica fume existence and its content with the duration of curing on concrete compressive strength (ordinary and high) has investigated experimentally. Two mixture sets were done in this work to examine the concrete ordinary and high strength. Every set involved four mixtures with varied silica fume proportions as a substitution of cement with (0, 5, 10 and 15 percent). Ninety-six cubes of concrete were prepared and cured by immersion in water to the required age (7, 28, 90 and 150 days). In ordinary concrete and high strength concrete, the results demonstrate that when silica fume used as a substitution with 15 %, the compressive strength of concrete gave the highest value. As compared with concrete having nil content of silica fume, the earned strength for high compressive concrete consisting of silica fume was relatively less than the corresponding ordinary concrete strength. However, continuously curing with water after 28 days produced a considerable increase in the compressive strength of concrete; such an increase in compressive strength was greater in the existence of silica fume    

Article
Properties of Sustainable Self Compacting Concrete Containing PET Waste Plastic with Various Cement Replacement Materials

Hind abdulminem, Mahmoud Mohammed

Pages: 45-59

PDF Full Text
Abstract

This main aim of this study is evaluate wide range of fresh and hardened properties of sustainable self-compacting concrete containing various types of Cement Replacement Materials with optimum contents of Polyethylene Terephthalate PET waste plastic as fibers and fine aggregate replacement. This is to evaluate effect of the two forms of PET and to determine the best CRMs could be used with sustainable SCC. such as limestone, glass powder and fly ash with high replacement rate of 70% by weight of cement were used while fourth one (kaolin) was used with replacement rate of 20%. PET fibers were added to SCC with an aspect ratio of 24.4 and 0.7% volume fraction whereas fine aggregate partially replaced by 4% of waste plastic. Four reference mixtures contained FA, LP, GP and KA only, same four mixtures contained 0.7% PET fibers by volume, and the other same four mixtures contained 4% PET fine aggregate by volume. The obtained results all tested fresh properties, which include slump flow, T500, L-Box and segregation resistance were within the limits of the specification reported in EFNERC guidelines. Further, the forms PET have an adverse effect fresh properties of SCC. As for hardened properties (compressive strength, splitting tensile strength, flexural strength and impact strength). Further, this produced type of SCC showed an range of compressive strength (15.2-31.64 MPa) at 28 days. It can be from the current study the best CRMs to be used in SCC containing PET wastes was FA in terms of most tested properties.

Article
The Effect of Adding Waste Plastic Fibers on some Engineering Properties of Roller Compacted Concrete

Adil N. Abed, Abdulkader I. Al-hadithi, Ahmed Salie Mohammed

Pages: 31-39

PDF Full Text
Abstract

This research includes producing compacted concrete by rolling method and the possibility for using in highway construction field with studying the influence of adding waste plastic fiber resulting from manual cutting for bottles used in the conservation gassy beverage on different characteristics of this type of concrete. For the purpose of selecting mix proportions appropriate for rolling compacted concrete (RCC). Approved design method for ACI-committee (5R-207 .1980) was selected for this research. Destroying plastic waste by volumetric rates ranging between (0.5%) to (2%) was approved. Reference mix was produced for comparison. Tests were conducted on the models produced from rolling compacted concrete like compressive strength, flexural strength and split tensile strength. The analysis of the results showed that the use of plastic waste fibers (1%) has led to improve the properties of each of the compressive strength and flexural strength and split tensile strength compared with reference concrete. Compressive strength in 28 days with fiber ratio (1%) is higher than (52.15%) from compressive strength in 28 days of reference concrete. It can be also observed that each of the flexural strength and split tensile strength increases by (17.86, 25.61)%, respectively, from flexural strength and split tensile strength for the reference mix

Article
Study on Flexural Behaviour and Cracking of Ferrocement Slabs by Neglecting Very Fine Sand

Mohammed Nawar

Pages: 11-22

PDF Full Text
Abstract

This paper presents the experimental results of eight slabs made of Ferrocement. All specimens were )700mm (long, )300mm (wide and )50mm (thick. These specimens were divided into two groups (The first group has four specimens coursed of normal sand gradient and in the other four specimens, the sand that passing from sieve No. 8 was neglected), to investigate behavior of slabs under bending effect and studying the cracks that generated after bending then, comparing the results between these two groups. A thin square welded wire mesh was used as reinforcement. The number of wire mesh layers was varied between 0 to 3 layers. Ultrasonic Pulse Velocity (UPV) Test was used to detect the cracks. The results showed that there was a slight rise in bending for first group slabs compared with second group slabs. Maximum bending strength was achieved for both slab groups with 3 layers of wire mesh. it was shown that there was a significant convergence in the load values required to cause appearing of the first crack and final failure for the two groups. The percentage of ultimate load between slab reinforced with 3 layers and without reinforcement was (25.27%) for the first group, while the increase in ultimate load for a specimen that reinforced with 3 layers was (24.16%) compared to specimen without reinforcement for the same group. On the other hand, the results showed an improvement in the performance of the second group slabs due to its resistance to appearing of cracks resulted from bending. The percentage of increasing cracks after bending for the unreinforced specimen in group 1 was (9%) compared with the unreinforced slab in group 2. Whereas the numbers of cracks number in slab reinforced with 1 and 2 layers in the second group were less than slabs with 1 and 2 layers in the first group about (8.86 %) and (7.77%), respectively. While this percentage for a specimen with 3 layers in group 2 was about (8.62%) less compared to the specimen with 3 layers in group 1..

Article
Finite Element Simulation of the Bearing Capacity of an Unsaturated Coarse-Grained Soil

Mohammed Y. Fattah, Khalid R. Mahmood, Muataz M. Muhyee

Pages: 17-28

PDF Full Text
Abstract

The mechanical behaviour of partially saturated soils can be very different from that of fully saturated soils. It has long been established that for such soils, changes in suction do not have the same effect as changes in the applied stresses, and consequently the effective stress principle is not applicable. A procedure was proposed to define the soil water characteristic curve. Then this relation is converted to relation correlating the void ratio and matric suction. The slope of the latter relation can be used to define the H-modulus function. This procedure is utilized in the finite element analysis of a footing on unsaturated coarse grained soil to investigate its bearing capacity. The finite element results demonstrated that there is a significant increase in the bearing capacity of the footing due to the contribution of matric suction in the range 0 to 6 kPa for the tested compacted, coarse-grained soil. The ultimate pressure increases from about 120 kPa when the soil is fully saturated to about 570 kPa when the degree of saturation becomes 90%. This means that an increase in the bearing capacity of about 375% may be obtained when the soil is changed from fully saturated to partially saturated at a degree of saturation of 90%. This development in the bearing capacity may exceed 600% when the degree of saturation decreases to 58%.

Article
Optimization of Different Properties of Ultra- High Performance Concrete Mixes for Strengthening Purposes

Duaa Suleman, Mahmoud Mohammed, Yousif Mansoor

Pages: 72-85

PDF Full Text
Abstract

The current research’s purpose is to examine how Ultra-High Performance Fiber Concrete (UHPFC) holds up in terms of strength and durability for strengthening purposes. For this reason, the experimental and the theoretical studies in this research attempted to assess different fresh and hardened properties of a variety of ultra-high performance combinations. Steel fibers were utilized to differentiate all of the program's combinations at percentages of  0.25 %, 0.5 %, 0.75 %, 1%, and 1.25 % by volume. Mini flow slump, compressive and flexural strength, ultrasonic pulse velocity, water absorption, and porosity tests were all used to examine the performance of the strength and durability of the material. The findings of this study's trials showed that steel fibers increased the strength of UHPFC. The steel fiber ratio of 1% gave the maximum compressive strength, whereas 1.25 percent yielded the highest flexural strength. Because the fibers function as a bridge, preventing internal breaking, the tensile test results were improved as the proportion of steel fiber rises. Through the use of the multi-objective optimization approach, the optimal ratio of fibers was chosen at the end of the laboratory work since it has the best durability and strength characteristics. Statistical software (Minitab 2018) was used to find the optimal combination of UHPFC that meets all of the requirements. The theoretical selected optimum ratio of 0.77% of fibers obtained from the optimization was evaluated and validated experimentally.  The optimized mix provided 90.28 MPa, 14.6 MPa, and 20.2 MPa for compressive, splitting tensile and flexural tests respectively with better durability performance compared to other mixes prepared in this investigation. 

Article
Finding out learning (curves, equations and rates) for constructional work activities in Iraq and comparing them with a neighboring country (Syria)

Dr. Ibrahim A. Mohammed

Pages: 14-23

PDF Full Text
Abstract

Very little attention was given to study learning curves phenomenon in the construction industry, for many reasons related to the nature of production in this industry and also because of the variety of factors which affect these works. This research aims to measure the amount of improvement in the acquired production by the workers on the repeated construction operation because of the experience and learning in Iraq compared with a neighboring country (Syria).The measurement technique involves recording the time required to achieve every unit and finding out the mathematical relation which represents the learning curve for each item of production. The study involves six items (activities) of construction as follows: 1- Ceramic tiles (20 × 20 cm) for walls. 2- Paving the pavement of the street with concrete blocks. 3- Tiling the rooms with mosaic (30 × 30 cm). 4- Building the walls with concrete blocks (20 × 20 × 40 cm). 5- Coating the walls with emulsion paints. 6- Finishing the walls with gypsum The most important results of the research are that the amount of learning varies from 4.2% to 8.6% in Iraq, and 3.3% to 11.8% in Syria, which considered little compared to the developed countries.

1 - 28 of 28 items

Search Parameters

Journal Logo
Iraqi Journal of Civil Engineering

University of Anbar

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

       
Copyright © 2025 College of Engineering, University of Anbar. All rights reserved, including those for text and data mining, AI training, and similar technologies.