Several different deterministic and probabilistic mathematical approaches have been used to develop modal split models. The data collected by a questionnaire survey approach is frequently associated with subjectivity, imprecision, and ambiguity. additionally, several linguistic terms are used to express some of the transportation planning variables. This can be solved by modeling mode choosing behavior with artificial intelligence techniques such as fuzzy logic. In this research, Ramadi city in Iraq has been selected as a study area. For the purpose of obtaining data, the study area was divided into traffic analysis zones (TAZ). The total number of traffic zones was set as 28 traffic zones, 22 were internal traffic zones and 6 external traffic zones. Field surveys and questionnaires are used to collect data on traffic, land use, and socioeconomic characteristics factors (age, gender, vehicle ownership, family income, trip purpose, trip origin and destination, trip time, waiting duration, duration inside mode, trip origin and destination, trip cost, and type of mode used for transport). The results showed that the modal split models based on the fuzzy inference system can deal with linguistic variables as well as address uncertainty and subjectivity and they gave very good prediction accuracy for future prediction. Fuzzy inference system proved that all factors affected the mode choice with a very strong correlation coefficient (R) equal to 93.1 for general trips but when the results were compared with multiple linear regression model found that the correlation coefficient (R) equal to 28.9 for general trips and the most influential factors on the mode choice are car ownership, age and trip cost. Thus, it can be concluded that fuzzy logic models were more capable of capturing and integrating human knowledge in mode selection behavior. In addition, this study will help decision-makers to plan transportation policies for Ramadi city
This research includes producing compacted concrete by rolling method and the possibility for using in highway construction field with studying the influence of adding waste plastic fiber resulting from manual cutting for bottles used in the conservation gassy beverage on different characteristics of this type of concrete. For the purpose of selecting mix proportions appropriate for rolling compacted concrete (RCC). Approved design method for ACI-committee (5R-207 .1980) was selected for this research. Destroying plastic waste by volumetric rates ranging between (0.5%) to (2%) was approved. Reference mix was produced for comparison. Tests were conducted on the models produced from rolling compacted concrete like compressive strength, flexural strength and split tensile strength. The analysis of the results showed that the use of plastic waste fibers (1%) has led to improve the properties of each of the compressive strength and flexural strength and split tensile strength compared with reference concrete. Compressive strength in 28 days with fiber ratio (1%) is higher than (52.15%) from compressive strength in 28 days of reference concrete. It can be also observed that each of the flexural strength and split tensile strength increases by (17.86, 25.61)%, respectively, from flexural strength and split tensile strength for the reference mix
The super fine materials constitute that portion of mineral filler finer than 10 microns. The effectiveness of these materials comes from their relation with asphalt film thickness. Asphalt cement grade (40-50) has been used. Nibaay course aggregate and Thmail fine aggregate were combined to achieve the aggregate gradation confirms with the Iraqi Standard Specifications for dense graded mix. Six different types of filler from five locally different sources in Iraq had used and subjected to grain size distribution, specific gravity and chemical composition tests. To study the effect of super fine materials on the performance of HMA mixture, Marshall stiffness, Indirect tensile strength, Moisture susceptibility and Creep tests have been made. Statistical analysis for results has been made. The conclusions referred to the importance of super fine materials due to their effect on HMA concrete properties.