Iraqi Journal of Civil Engineering
Login
Iraqi Journal of Civil Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
    • Reviewers of IJCE
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Journal Funding Sources
    • AI Usage and Disclosure Policy
    • Announcements
    • Contact

Search Results for Ameer Hilal

Article
Mechanical Properties of Hybrid Carbon Fibers Reinforced Modified Foamed Concrete

Areej Njyman, Ameer A Hilal

Pages: 60-67

PDF Full Text
Abstract

Foamed concrete (FC) is a type of lightweight concrete characterized by a high void space ratio and cementitious binders. In this research, the fresh and mechanical properties of fiber-reinforced modified foamed concrete (made with fly ash, silica fume, and superplasticizer) with a density of 1300 kg/m³ were studied. Carbon fibers of different lengths (12 mm, 20 mm, and 28 mm) were introduced in two ways: as single fibers (12 mm) and as hybrid fibers combining lengths of 20 mm and 28 mm.
The results showed that the compressive and split tensile strengths  increased by approximately 43% compared to the control mix (modified with additives) when using a single fiber of 12 mm at a volume proportion of 0.4%. In contrast, using hybrid fibers resulted in increases of about 65% and 66% in compressive and split tensile strengths, respectively. When compared to the single fiber method, the hybrid approach improved compressive and split tensile strengths by about 15% and 16%, respectively.

Article
A Review of the Flexural Behavior of Steel-Concrete Composite Beams Experimentally and Numerically

Husam Khalaf Al-Ani, Ameer A Hilal, Sheelan Mahmoud Hama

Pages: 19-47

PDF Full Text
Abstract

Composite beams, made up of a concrete slab and steel in the IPE steel section, are commonly used in bridges and buildings. Their main function is to enhance structural efficiency by merging the compressive strength of concrete with the tensile resistance of steel, thereby improving overall stiffness, ductility, and load-bearing capacity. This study offers an extensive review of the flexural behavior of steel-concrete composite beams, focusing on the interplay of concrete strength, shear connector types, and interaction levels in determining structural performance. It integrates experimental and numerical research to analyze critical parameters, including load-deflection behavior, shear transfer efficiency, and crack propagation at the steel-concrete interface. The study emphasizes the effect of concrete compressive strength, particularly in ultra-high-performance concrete (UHPC) and lightweight concrete, on stiffness, ductility, and load-bearing capacity while reducing self-weight and enhancing sustainability. The study revealed that fully bonded shear connectors, using CFRP sheets and welded plates, enhance flexural capacity and stiffness. In contrast, partial bonding or pre-debonding reduces performance due to crack propagation. Indented and hot-rolled U-section connectors enhance interaction and minimize slip, while uniform distribution of shear connectors optimizes load capacity and stiffness. Lightweight concrete decreases slab weight without compromising performance, and high-performance materials such as ECC, SFRC, and UHPFRC improve strength and ductility. Numerical modeling, particularly finite element methods, and higher-order beam theories validate experimental results, providing accurate tools for predicting structural behavior under various loading and environmental conditions.

Article
Ductility, Toughness, and Flexural Performance of Hybrid Foamed- Normal Concrete Beams

Angham Jaffal, Ameer Hilal, Akram Mahmoud

Pages: 97-106

PDF Full Text
Abstract

A study examined the ductility and toughness properties of beams made of reinforced concrete, including foamed, normal, and hybrid beams. Nine reinforced concrete beams were produced: three foamed concrete beams, three normal concrete beams, and three hybrid concrete beams. Each beam possessed identical rectangular cross-sectional dimensions of 1500 mm × 250 mm × 150 mm. The flexural parameters (ultimate load, ductility, deflection, and durability) were assessed for each type of concrete utilized. The study's results showed that the load-bearing capacity of hybrid concrete beams was comparable to that of normal concrete beams, whereas foamed concrete beams exhibited slight improvement in their ability to carry loads. The ductility of reinforced foamed concrete beams was lesser than that of normal concrete. For over-reinforced beams, the ductility of hybrid concrete beams showed a significant improvement of 61% compared to foamed beams and an even more significant increase of 91.7% compared to normal beams. Furthermore, the hybrid concrete beam with over-reinforcement had a flexural toughness of 18.7% greater than the normal concrete beam. Suggested that a hybrid section comprising conventional and foamed concrete be utilized to decrease ductility and improve stiffness.

1 - 3 of 3 items

Search Parameters

Journal Logo
Iraqi Journal of Civil Engineering

University of Anbar

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

       
Copyright © 2025 College of Engineering, University of Anbar. All rights reserved, including those for text and data mining, AI training, and similar technologies.