Iraqi Journal of Civil Engineering
Login
Iraqi Journal of Civil Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
    • Reviewers of IJCE
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Journal Funding Sources
    • AI Usage and Disclosure Policy
    • Announcements
    • Contact

Search Results for Khalil I. Aziz

Article
MECHANICAL PROPERTIES FOR ORDINARY CONCRETE CONTAINING WASTE PLASTIC FIBERS

Khalil Ibrahim Aziz, Huda Al Moqbel kuhair

Pages: 33-44

PDF Full Text
Abstract

This study program has been conducted to investigate the influence of adding waste plastic fibers (WPF) resulting from manual cutting for bottles used in the conservation gassy beverage on different characteristics of ordinary concrete. Cutting plastic waste by volumetric rates ranging between (0.5%) to (2%) was approved. Reference mix was produced for comparison. Tests were conducted on the models produced from waste plastic fiber concrete like compressive strength, flexural strength and splitting tensile strength. The analysis of the results showed that the use of plastic waste fibers (1%) has led to improve the properties of flexural strength and splitting tensile strength compared with reference concrete .When the( 0.75%)WPF ratio improved the compressive strength as compared with the control specimen . Compressive strength in (28 days) with fiber ratio (0.75%) WPF is higher than equal (5.1%) from compressive strength in (28 days) of reference concrete. Volumetric ratio (1%) WPF can be also observed that each of the flexural strength and splitting tensile strength increases equal (12.5 and 12.5%) respectively, from flexural strength and splitting tensile strength for the reference mix at(28day).

Article
Mechanical Properties of Porcelinite Reinforced Concrete Beams

Ayad A. Slaby, Khalil I. Aziz, Ali Farhan Hadeed

Pages: 1-24

PDF Full Text
Abstract

The researches in Iraq has expanded in the field of material technology involving the properties of the light weight concrete using natural aggregate aviable in westran of Iraq. Researches work on porcelinite concrete has been carried out in several Iraqi Universities. The study is deals with mechanical properties of porcelinite aggregate concrete by casting (273) different specimens. These properties are, compressive strength, flexurale strength, splitting strength, static modulus of elasticity and absorption. The results indicated that the structural light weight aggregate concrete produced from local porcelinite aggregate is suitable to used as a structural concrete, it can produce structural light weight concrete of compressive strength varies from (23.0 to 29.8) MPa with the density ranges from (1745 to 1855) kg/m3, by using cement content about (550 and 650) kg/m3.Such concrete exhibited good mechanical properties. It gave the values of splitting tensile strength, modulus of rupture and modulus of elasticity, 75%, 90% and 60% from those of normal weight concrete respectively owning the same compressive strength and meeting the requirement of ACI-213

1 - 2 of 2 items

Search Parameters

Journal Logo
Iraqi Journal of Civil Engineering

University of Anbar

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

       
Copyright © 2025 College of Engineering, University of Anbar. All rights reserved, including those for text and data mining, AI training, and similar technologies.