Microbial-induced carbonate precipitation (MICP) is a fast-evolving technology for cementing sandy soils, improving ground, repairing concrete cracks, and remediating contaminated land. The current work thoroughly reviews various factors that can impact the effect of the MICP technology on geomaterials. These factors include the type and strain of the microbes, concentration of bacterial solution, cementation solution composition and concentration, environmental factors (temperature, pH level, and oxygen dissolved), and soil properties. It was found that the type and strain of bacteria, concentration of bacterial suspension, pH value, temperature, and the reaction solution properties are the most affecting factors in controlling the characteristics of the produced calcium carbonate, which in turn affects the degree of bonding between geomaterials particles. For an optimal implementation of the MICP in soils treatment, it appeared that for the most commonly used bacterial strains a temperature between 20 and 40 °C, a pH between 6.5 and 9.5, and a cementation solution concentration of 0.5 mol/L, are typically recommended.
This study investigates the strength performance and microstructural changes of a sandy gypseous soil improved with fly ash-based geopolymer, for shallow and deep applications. Different proportions of geopolymer were added to a natural gypseous soil having a gypsum content of 30% to 40% with different water contents. The fly ash was activated using sodium hydroxide with molar concentrations 8 and 12 molar and sodium silicate. The ratios of the fly ash to the activator were 1 and 2. Specimens were cured for different ages at 30°C. To simulate the field conditions, a number of specimens were immersed in a salt-saturated solution. Materials performance was evaluated at the macro level by performing unconfined compression test and at micro level by performing scanning electron microscopy test. The study showed that an increase in the molar concentration of sodium hydroxide and of the binder ratio improved material’s strength particularly at lower water contents of the soil. Increasing the binder content to about 30% improved the strength by enhancing the bonding between the soil particles. On the other hand, immersing the samples in the salt solution led, in most cases, to breakdown of the geopolymer network, as confirmed by the SEM images. It was concluded that the fly ash geopolymer-soil mixtures under investigation can provide as high as 8 MPa uniaxial strength under no sulfate attack. However, under sulfate attack condition, this strength can decrease to as low as 0.5 MPa. Even under the worst case, the later strength can be just enough to support shallow foundations rested on a saturated gypseous soil.
Pavement rutting as a permanent deformation is a major type of distress in flexible pavements. In Iraq, the rutting in Expressway pavements represents a severe problem due to its widespread, and high severity and distress density levels. Therefore, driving is profoundly dangerous and causes severe damage to the vehicle’s parts and the life of its riders. To date, the number of comprehensive research on pavement rutting has been limited in Iraq, owing to several technical, logistic, and economic considerations. The current research studies the major mechanisms responsible for rutting and evaluates the structure of the Iraqi Expressway No.1 at selected sections. The work encompasses field and laboratory aspects. The field work involved; performing field surveys to investigate the pavement rutting condition and its extension with depth, characterizing pavement layers in terms of geometric material properties, and collecting field samples for lab tests. The laboratory work was detailed and included; performing a set of standard lab tests on samples taken from the asphalt, the subbase, and the subgrade layers as well as the natural ground. In addition, the project’s archive was searched for specific design information and limitations. In order to assess pavement rutting in the selected sections of Expressway No.1/R9 (A and B), two well-established evaluators were considered; The rutting severity levels and the distress density.
A BSTRACT: Leaching effects on permeability and compressibility characteristics of undisturbed sandy gypseous soil were investigated in this study. Time, stress level, strain, leachate condition and flow velocity were considered. The loading, leaching and permeability measurements were carried out utilizing the constant head pereameter with special modifications. Test results show that salt leaching and thereby leaching strain is a time dependent process. Also as leaching strain continued coefficient of permeability decreases.
ABSTRACT A study of the effect of cutback MC-60 on the permeability and compressibility characteristics of sandy gypseous soil is presented. Series of laboratory tests are carried out including classification, compaction, and conventional oedometer tests as well as a new test named compressibility- permeability leaching test. Test results shows that the superlative enhancement in compressibility and permeability and thereby in collapsibility occurred with 7% additive.