Iraqi Journal of Civil Engineering
Login
Iraqi Journal of Civil Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
    • Reviewers of IJCE
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Journal Funding Sources
    • AI Usage and Disclosure Policy
    • Announcements
    • Contact

Search Results for Riyadh I. M. Al-Amery

Article
Behavior of Multi-Layer Composite Beams with Partial Interaction Part II

Khalel I. Aziz, Zeyad M. Ali, Riyadh I. M. Al-Amery

Pages: 1-24

PDF Full Text
Abstract

ABSTRACT: In this study an attempt is made to derive governing equations satisfying equilibrium and compatibility, for multi-layer composite beams with different layers, materials properties and dimensions for linear material and shear connector behavior in which the slip (horizontal displacement) and uplift force (vertical displacement) are taken into consideration. The analysis led to a set of number differential equations containing derivatives of the fourth and third order, number of these equations depending on number of layers forming the beam section. The theory developed for three, four, and five layers. A general formula were derived to find the governing equations (compatibility and equilibrium equations) for any layered composite beam.

Article
Behavior of Multi-Layer Composite Beams with Partial Interaction Part II

Khalel I. Aziz, Zeyad M. Ali, Riyadh I. M. Al-Amery

Pages: 1-24

PDF Full Text
Abstract

ABSTRACT: In this study an attempt is made to derive governing equations satisfying equilibrium and compatibility, for multi-layer composite beams with different layers, materials properties and dimensions for linear material and shear connector behavior in which the slip (horizontal displacement) and uplift force (vertical displacement) are taken into consideration. The analysis led to a set of number differential equations containing derivatives of the fourth and third order, number of these equations depending on number of layers forming the beam section. The theory developed for three, four, and five layers. A general formula were derived to find the governing equations (compatibility and equilibrium equations) for any layered composite beam.

Article
BEHAVIOR OF MULTI-LAYER COMPOSITE BEAMS WITH PARTIAL INTERACTION "PART I "

Khalel I. Aziz, Zeyad M. Ali, Riyadh I. M. Al-Amery

Pages: 1-18

PDF Full Text
Abstract

ABSTRACT: In this study an attempt is made to develop a method of analysis dealing with a multi-layer composite beam, for linear material and shear connector behavior in which the slip (horizontal displacement) and uplift force (vertical displacement) are taken into consideration. The analysis is based on a approach presented by Roberts[1], which takes into consideration horizontal and vertical displacement in interfaces. The analysis led to a set of eight differential equations contains derivatives of the fourth and third order. A program based on the present analysis is built. Series of three push-out tests were carried out to investigate the capacity of shear stiffness for connectors. From these tests, load-slip curves were obtained. Also, series of multi-layer composite simply supported beams were tested. Each one consists of three layers in different material properties and dimensions. A comparison between the experimental values and numerical analysis is carried out. Close agreement is obtained with experimental values for different materials, layers thickness and shear stiffness.

1 - 3 of 3 items

Search Parameters

Journal Logo
Iraqi Journal of Civil Engineering

University of Anbar

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

       
Copyright © 2025 College of Engineering, University of Anbar. All rights reserved, including those for text and data mining, AI training, and similar technologies.