This research paper is accomplished to study the effect of using waste fibers in properties of concrete . Steel lathe waste fibers are added by percentages of (4, 6 and 8 %) from weight of concrete and a percentages of concrete coarse aggregate are replaced by rubber tires waste fibers in a ratios of (5, 10 and 15%) by volume . Besides to that, the combined fibers are used steel lathe waste fibers by adding (4, 6 and 8 %) with constant replacing of rubber tires waste fibers of (10 %). The results showed that adding of steel lathe waste fibers in plain concrete enhances its strength under compression about (15%) and tension about (20%), while rubber tires waste reduced both of compression about (80 %) and tension about (51%) strengths .Also the compression and tension strengths are reduced (88% and 30%) respectively with using combined fibers . The dry concrete density of lathe waste fibers concrete is (2345-2365kN/m3) , the rubberized concrete density is (2130-2240kN/m3) and for combined fibers concrete density (2025-2180 kN/m3).
Abstract:Many of researchers study the uses of chopped worn-out tires as a replacementmaterial to production special types of concrete. In presented work, the worn-out tireswere used as fibers which have dimensions of 1×1×3 cm. The fibers used as a partialreplacement from volume of coarse aggregate. Two mixes of fiber worn-out tires(F.W.T.) concrete in addition to reference mix were selected, using PartialReplacement Ratio (PRR) of 20% and 30%. The tests which were used in this studywere: compressive strength, splitting tensile strength and flexural strength. It wasfound that incorporating of F.W.T. in concrete effected negatively on most propertiesof concrete, for example the percentage decreases in compressive strength relative toreference mix at 28 day were 20% and 27.3% for concrete with 20% and 30% F.W.T.by volume of coarse aggregate respectively. However, it gave good indicator to beutilized as a new construction material in many applications.
AbstractThis study aims to investigate the properties of SCC produced by locally availablematerials , and attempts have been made to increase the range of grading of fineaggregate, with fineness modulus ranging from (1.5 to 4.1) , and to study the effect of themaximum size of coarse aggregate . It also aims to study the influence of High ReactivityMetakaolin (HRM) as a partial replacement by weight of cement on the properties of freshand hardened SCC, 24 different mixes of SCC are prepared .8 mixes are considered asReference mixes which are used for comparison purposes. To determine the workability,different test methods were adopted such as slump flow, V-funnel, and L-box tests. Whenfineness modulus of fine aggregate and maximum size of coarse aggregate increase,flowability, passing ability and segregation resistance decrease as compared with smallmaximum size of aggregate and other fineness modulus. Further more, the inclusion of10% HRM as a partial replacement by weight of cement leads to decrease flow ability andincrease of viscosity. The fineness modulus (3.1) of fine aggregate gives better resultsthan other fineness modulus. The results obtained from this study, also show that it ispossible to produce SCC from local available materials which satisfy the requirement ofthis type of concrete. Moreover, the results show the possibility of using different gradingof fine aggregate with fineness modulus ranging from (1.5 to 4.1) and the effect ofchange in fineness modulus is not significant on hardened concrete properties , while it ismore significant on fresh concrete properties .
ABSTRACT: Many of researchers study the uses of chopped worn-out tires as a replacement material to production special types of concrete. In presented work, the worn-out tires were used as fibers which have dimensions of 1×1×3 cm. The fibers used as a partial replacement from volume of coarse aggregate. Two mixes of fiber worn-out tires (F.W.T.) concrete in addition to reference mix were selected, using Partial Replacement Ratio (PRR) of 20% and 30%. The tests which were used in this study were: compressive strength, splitting tensile strength and flexural strength. It was found that incorporating of F.W.T. in concrete effected negatively on most properties of concrete, for example the percentage decreases in compressive strength relative to reference mix at 28 day were 20% and 27.3% for concrete with 20% and 30% F.W.T. by volume of coarse aggregate respectively. However, it gave good indicator to be utilized as a new construction material in many applications.
This research includes studying the possibility of producing a new kind of No-fines concrete by replacing granules of coarse aggregates with grains results from the fragmentation of industrial waste of polystyrene. This replacing were with different volumetric proportions of coarse aggregate, and theses volumetric ratios were equal to (5%, 10%, 15% and 25%). Waste plastic fibers (WPFs) resulting from cutting of soft drinks bottles were added for strengthening this new kind of concrete. Mixing ratio was equal to (1:5) (cement: coarse aggregate) by weight. One reference mix was produced for comparative purpose. Compressive strength, flexural strength and density tests were conducted, it was examined three samples of each examination and taking the average. Compressive strength values of the new sustainable concrete were ranged from 10 MPa to 12.4 MPa at age of test equal to 28 days, while the average value of the density of this concrete at the same age reaches 1930 kg/m3. This average value of modulus of rupture was equal to 2.36 MPa at 28-day age test.
The main objective of this study is to get more information about the flexural behavior of composite reinforced concrete slabs using two layer of concrete, first layer is light weight concrete (LWC), and second layer is normal weight concrete (NWC), through an experimental tests carried out on five samples different in their details and the position of the concrete type layer within the slabs. In this study, simply supported slabs subjected to one point load were adopted. The effect of concrete grade for the (LWC) was also studied. The light weight coarse aggregate which that used in this study is the expanded light clay aggregate (LECA). Using this type of light aggregate in concrete leads to reducing the weight of composite concrete slabs about (11.4%-17.5%). In this study, one grade of NWC was used of (25 MPa), while three of grade types were adopted for LWC (25 MPa, 18 MPa, 15 MPa).
The aim of this study is to develop Lightweight self-compacting concrete (LWSCC) mixtures using locally sourced waste materials such as Expanded Polystyrene Beads (EPS) and Waste Plastic Fibers (WPFs) which are all available abundantly available in Republic of Iraq at little or no cost. The fresh, hardened and mechanical properties of these LWSCC were studied, followed by results analysis. Five different mixes of LWSCC were prepared in term of WPF content (0.25, 0.5, 0.75, 1.0, and 1.25 %), in addition to the control mix (R mix) and lightweight concrete (E mix) made of EPS content as a replacement of coarse aggregate. The study showed that the LWSCC produced with these waste materials were decreased the density (lightweight) of the concrete mixes as EPS tend to form more clumps, absorb water and make the mix dry. Therefore, concrete mixtures were adjusted accordingly to be able to offset the workability caused by the addition of EPS. The increase in WPF content decreased the workability due to clumping that occurred in the mixing phase. The analysis of mechanical properties of the LWSCFRC specimens revealed that there was not much improvement. While LWSCC with 100% of EPS replacement as coarse aggregates and 1.25% WPFs provides the best flexural toughness performance