Iraqi Journal of Civil Engineering
Login
Iraqi Journal of Civil Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
    • Reviewers of IJCE
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Journal Funding Sources
    • AI Usage and Disclosure Policy
    • Announcements
    • Contact

Search Results for dem

Article
Optimal Height And Location Model (OHALM) for rainwater harvesting small dams (Iraqi western desert- case study)

Rasha Ismaeel Naif ., Isam M. Abdulhameed .

Pages: 31-36

PDF Full Text
Abstract

Dams are considered as the best solution to conserve water especially in arid and semi-arid regions. This study aims to design a small dams series to conserve rainfall water. Mathematical model is proposed to optimize these dams height and locations, its named as Optimal Height And Location Model (OHALM). In this study, new method is introduced to estimate the optimal water level and volume of storage by combining between the digital elevation model generated by the Advanced Space borne Thermal Emission and Reflection Radiometer (ASTER) data, and the proposed model (OHALM). Two dams sites were selected for checking the validity of proposed method. The results of the present study showed that the error percentage increase or decrease from reference value by 3.5%, 13% for water level in Al-Rutba dam and Horan 3 dam respectively, and by 6.63%, 35.8% from volume of storage in Al-Rutba dam and Horan 3 dam respectively. The relative error shows a big difference from the actual data, which is a positive percentage for storing additional quantities of rainwater. That means the proposed program is better than the existing dam design, and thus the possibility of using this method to determine the optimal height of the proposed water harvesting sites.    

Article
Estimation of the Surface Runoff Volume of Al-Mohammedi Valley for Long-Term period using SWAT Model

Ali M. Farhan ., Dr. Hayder A. Al Thamiry .

Pages: 7-12

PDF Full Text
Abstract

The management of water resources requires adequate information on the quantities of water supplied from the basins that outfall into a river, especially during the flood seasons. The study area located in the western part of Iraq within the administrative boundaries of the Heet district about 70 km from Haditha Dam, 45km from Ramadi in Anbar province. The study aims to evaluate the amount of surface runoff through a long-term period (1981-2019). Soil and Water Assessment Tool (SWAT) related to Geographic Information System (ArcGIS) was used for the simulation. The input data was the Digital Elevation Model (DEM) of SRTM with resolution 30m, land use/land cover map from the European Space Agency (ESA) with resolution 300m and, soil map from the Food and Agriculture Organization (FAO). The weather data used in the study were obtained from the Climate Forecast System Reanalysis (CFSR) combined with the weather data from the Surface meteorology and Solar Energy (SSE) produced by NASA. These weather data prepared using SWAT weather database software to be ready for the simulation processes. Al-Mohammedi valley was calibrated and validated using SWAT-CUP software using the available recorded discharges at Heet, Ramadi, and Al-Warar gauge stations. The calibration is based on the meteorological data for the period January 1, 2002, to December 31, 2006, and the validation was based on the data between January 1, 2007, to December 31, 2009. The model calibration and validation results based on two objective functions “Nash-Sutcliffe (NS) and coefficient of determination(R2)” showed that SWAT was successfully simulated Al-Mohammedi valley with NS = 0.72 and R2 = 0.76 for calibration, and NS = 0.63 and R2 = 0.65 for validation. According to SWAT results, the average runoff volume in the long-term period of simulation from January 1, 1981, to October 31, 2019, was 79.2 million m3 while the average runoff depth was 18.25 mm with about 17 % of rainfall becomes surface runoff.    

Article
Study the Hydromorphometric Properties of Wadi Jbab in Iraqi western plateau

Sadeq O. Al-Fahdawi, Mashal M. Al-jumaily

Pages: 28-44

PDF Full Text
Abstract

The research aims at revealing the morphometric characteristics of wadi Jbab Basin, which include areal ,relief characteristics, and the shapes of cross- sections of the valley. The hydrological properties of Jbab basin were studied to estimate the amount of water received by its catchment area during rain falls, thus, the appropriate places for the construction of dams and reservoirs for use in water harvesting can be determined. The area under study is located in Iraqi western plateau , between the latitudes of 33º 55' 45"N to 34 º 27' 50" N, and longitudes 41º 24' 30" E to 41º 43' 00" E. Remote sensing technology (RS) and geographic information systems (GIS) were used to reach the objectives of this research, so Digital Elevation model (DEM) for the year 2009 was brought to program (Arc GIS 9.3) and detected the basin and valley of Jbab automatically by using the hydrological analysis method. The area under study is characterized by the drought with a deficit of water in all months of the year where the highest in the month of July, amounting to 324.5 mm and the lowest in January, 10.92 mm. The geological formations prevail formations limestone, with sandy soil to sand-clay mixture, with lack of density in the vegetation. The average slope in basin of Wadi Jbab is 0.25 degree. There are five ranks of river, the sum of their tributaries 676 tributary within an area of 986.6 km ², and its perimeter is 214.3 km , it is also noticed the form of the basin tends to form a rectangle, with three places suitable for the construction of dams and reservoirs depending on the morphometric and hydrologic information that related to the area of research.

1 - 3 of 3 items

Search Parameters

Journal Logo
Iraqi Journal of Civil Engineering

University of Anbar

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

       
Copyright © 2025 College of Engineering, University of Anbar. All rights reserved, including those for text and data mining, AI training, and similar technologies.