Iran has recently started a well-planned project, called Tropical Water Project (TWP), to build more dams, tunnels, and canals on the main tributaries of the Diyala River (Sirwan and Zmkan) to irrigate agricultural areas inside and outside the Diyala River basin. One task in the TWP project is diverting a large volume of the water flowing through the Sirwan and Zmkan rivers through a series of tunnels. The largest one, called Nowsud water conveyance tunnel, transports water from Hirwa dam to Azgala dam to irrigate millions of hectares of new agricultural areas extending from Kermanshah province in the AL Ahwaz province. This research aims to identify the different features and the size of this project as well as the extent of its impact on the Diyala River and Darbandikhan dam. From the results, it was found that the TWP project consists of 14 dams constructed on Sirwan and Zmkan rivers and their tributaries with a total storage capacity of 1.9 Milliard cubic meters and of about 150 km long tunnels to divert more than one Milliard m3 of water to another basin. In addition, it has been found that after the full operation of the TWP project, the catchment area of Darbandikhan dam will lose 77% of its original one.
Activated sludge process is considered one of the most common and highly effective methods used in aerobically biological treatment systems. The design of such systems is usually based on the biological kinetic approach considerations. The present study is concerned in determining the biological kinetic of the last part of Diyala River at AL-Rustimiyah WWTP's, Baghdad, Iraq. A completely mixed continuous flow lab-scale reactor without recycling was used for this purpose. Various detention times were adopted during the experimental work ranging from 0.723 to 3.809 days. Influent and effluent BOD5, MLVSS and MLSS for the aeration tank, among other tests were performed at different detention times, after reaching the steady state conditions, in order to generate the required data for bio-kinetic coefficients. The biological kinetics k, Y, Kd, and Ks for the last part of Diyala River at AL-Rustimiyah WWTP's were found to be 5.68 d-1, 0.75, 0.06 d-1, and 70 mg/l, respectively. These values were compared with the bio-kinetics of different types of wastes and were found to be within the typical ranges of bio-kinetic parameters for activated sludge process treating domestic wastewater, which indicates that the water at the river reach of interest is rather wastewater than pure river water.
The current study includes application of QUAL2K model to predict the dissolved oxygen (DO) and Biochemical Oxygen Demand (BOD5) of lower reach of the Diyala River in a stretch of 16.90km using hydraulic and water quality data collected from Ministry of Water Resources for the period (January-April 2014). Google Earth and Arc-GIS technique were used in this study as supported tools to provide some QUAL2K input hydro-geometric data. The model parameters were calibrated for the dry flow period by trial and error until the simulated results agreed well with the observed data. The model performance was measured using different statistical criteria such as mean absolute error (MAE), root mean square error (RMSE) and relative error (RE). The results showed that the simulated values were in good agreement with the observed values. Model output for calibration showed that DO and CBOD concentration were not within the allowable limits for preserving the ecological health of the river with range values (2.51 - 4.80 mg/L) and (18.75 – 25.10 mg/L) respectively. Moreover, QUAL2K was used to simulate different scenarios (pollution loads modification, flow augmentation and local oxygenation) in order to manage the water quality during critical period (low flow), and to preserve the minimum requirement of DO concentration in the river. The scenarios results showed the pollution loads modification and local oxygenation are effective in raising DO levels. While flow augmentation does not give significant results in which the level of DO decrease even with reduction in the BOD5 for point sources. The combination of wastewater modification and local oxygenation (BOD5 of the discharged effluent from point sources should not exceed 15 mg/L and weir construction at critical positions 6.67km from the beginning of the study region with 1m height) is necessary to ensure minimum DO concentrations.
Severe Shortage and bad quality of Surface water in the area of Diyala Bridge , added to the growing demand for drinking , irrigation and sanitary waters , leads to study and qualify the under ground water in this area , Six shallow wells has been selected to the east of Diyala river , five of them where on shore and the sixth was far away from river about ( 3 km) .The depth of these wells was (10- 14)m . Tests of ( Ph , TDS , BOD , Turbidity , Conductivity ,----etc) where performed during March , June, Aug. in 2008. Heavy metals such as ( Pd , Zn , Cd , Fe , Mn ) has been examined as well . Results of physical , chemical and bacteriological tests show that the water quality of these wells were not comply with WHO requirements ,as well as results show considerable increased concentrations in TDS,BOD and heavy metals which indicates that underground waters were highly polluted with the sanitary waste waters . On the other hand the on shore wells' water quality was very close to the river water quality in comparison with the well in the middle of the town.