This study presents an experimental investigation performed to investigate the using of steel fiber reinforced concrete (SFRC) as an alternative to negative reinforcement in continuous RC thin slab panels. More rational way has been used by replacing negative reinforcement near interior supports by steel fiber reinforced concrete (SFRC). Tests were carried out on four slab panels, simply supported under single point loading. One of which were made fully with NSC, and the others were made partially with SFRC in negative moment zone. Experimental results show that the ultimate load capacity are increased (23% -58%) and the cracking loads are increased (25% -62.5%) for tested specimens strengthened with SFRC, in comparison with the reference specimens. Crack arrest mechanism of steel fibers limits crack propagation, improves the ultimate and tensile strength. So, more practical technique can be concluded from this study and employed in manufacturing of thin slabs.
Abstract: This research is devoted to investigate the behavior of steel fiber reinforced concrete members subjected to blast loading. Material nonlinearity due to nonlinear response of concrete in compression, tensile cracking, strain softening after cracking, crushing of concrete and the yielding of steel reinforcement are considered. Three-dimensional finite element is used with eight and twenty-node are hexahedral isoparametric brick element for the spatial discretization. In the idealization of the reinforced concrete structures, the steel reinforcement is incorporated in the concrete brick element as a smeared layer assuming perfect bond. Concrete is modeled as an elasto-viscoplastic model in compression and as a linear elastic strain softening in tension. The steel reinforcement is assumed to have uniaxial properties in the direction of the bars. A classical elasto-viscoplastic model is used to model the reinforcement. Some numerical problems are solved and compared with other studies to verify the applicability and accuracy. Parametric study to investigate the effect of some important parameters has been carried out. The results showed that the use of steel fibers in members subjected to dynamic loading lead to better performance.
This study presents an experimental research of Self-Compacting Concrete (SCC) properties containing waste plastic fibers (WPF). Adding waste plastics which resulting from cutting PET bottles as fibers to SCC with aspect ratio (l/d) equal to (28). To illustrate the effects of WPFs on the SCC, the current study was divided into two parts, the first part shows the effect of adding plastic fibers on the properties of fresh SCC, which include the ability flow, spread, passing and resistance to segregation, and the second part to evaluate the properties of hardened (mechanical) destructive and non-destructive, which include compression strength, flexural strength and ultrasonic pulse velocity test. One reference concrete mix was conducted and eight mixes contain WPF has been producing self-compacting concrete mixers containing a different volumetric ratio of plastic fibers (Vf) % percentages (0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2) %. Three cubes samples were prepared for testing the compressive strength, three prisms were prepared for the test modules of rupture, one cylinder were prepared testing the modulus of elasticity. The experiments show that adding plastic fibers to SCC leads to an increase in the compression strength and modulus of rupture at 28-day as follows (42.30)% and (73.12)% respectively for mix ratio (1.5)% in comparison with the reference mix, which represent the best ratio of fibers, as such the results of testing the fresh concrete containing waste fibers showed that adding these fibers led a reduction in workability for SCC.
The present study, concern about an experimental work to study the stress-strain relationship of steel-fiber reinforced polymer modified concrete under compression. Four different mixes with weight proportions of (1:2:4) were used as; normal weight concrete (NC), polymer modified concrete (PMC) with (10%) of cement weight and two mixes of steel-fiber polymer modified concrete with (1%) and (2%) volume fraction of steel fiber, (SMPC). The influences of polymer and fiber addition on peak stress, strain at peak stress and the stress-strain curve were investigated for concrete mixes used. For all selected mixes, cubes (150×150×150mm) were made for compressive strength test at (28) days while stress-strain test was caried out on cylinders (150 mm 300 mm) at the same age. Results showed an improvement in compressive strength of polymer modified concrete (PMC) over reference mix, the maximum increase of it was (13.2 %) at age of (28) days. There is also an increase in compressive strength with increasing of steel fibers content with comparison to normal concrete, the maximum increases of it were (19.6% and 25.2%) of mixes with 1% and 2% fiber content by volume respectively. In terms of modulus of elasticity, the addition of polymer and the presence of fibers cause a significant increase in it. The peak of stress- strain curve for normal strength concrete (Mix No.1) was linear whereas it was more sharp for the other mixes. The behaviour of normal strength concrete (Mix No.1) was linear up to 20 % of ultimate strength, while for the mixes with the higher strength i.e. polymer modified concrete and fibers reinforced concrete (Mixes No.2, 3 and 4) the linear portion increases up to about 50 % of ultimate strength