Iraqi Journal of Civil Engineering
Login
Iraqi Journal of Civil Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
    • Reviewers of IJCE
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Journal Funding Sources
    • AI Usage and Disclosure Policy
    • Announcements
    • Contact

Search Results for flexural-behavior

Article
Experimental and Numerical Analysis of Flexural Behavior of Layered Polyethylene (PET) Fibers RC Beams

Omar Khalid Ali ., Abdulkader I. Al – Hadithi ., Ahmad Tareq Noaman .

Pages: 28-46

PDF Full Text
Abstract

Nonlinear numerical analysis of nine reinforced concrete beams with dimensions (150 x 200 x 1200) width, height and length, respectively, was carried out through the finite element theory using the ANSYS software (version 15) to know the effect of different properties of layers in the one beam on the flexural behavior of reinforced concrete beams. The beams are consisting from two layers for the one cross-section. three beams are similar properties layers and the other six are with different properties layers. The beams differ among them depending on the percentage of Polyethylene terephthalate (PET) fibers added, the location of the fibrous concrete layer as well as the thickness of the layer. PET fibers were added in proportions (0%,0.5%, and 1%) from volume of the one layer, with dimension (50 x 4 x 0.3) mm length, width, and thickness respectively. All beams are reinforced with steel reinforcement (6 mm diameter at the top, 10 mm diameter for reinforcement against shear and 12 mm diameter in the tension area). The mechanical properties of each type of mixture have been studied. It was found that the different properties of the layers significantly affected the flexural behavior of reinforced concrete beams. Also the results of the numerical modeling were very close to the laboratory results obtained from the practical study, where the largest difference between the two studies was 8% and 11% for the load and deflection respectively at the ultimate point    

Article
Mechanical Properties And Flexural Behavior of reinforced Polymer Modified Concrete beams enhanced by Waste Plastic Fibers (WPF)

Dr.Abdulkader Ismail Al- Hadithi, Shahad Younus Thabet Al-Waysi

Pages: 16-32

PDF Full Text
Abstract

This research include the study of flexural behavior of polymer modified concrete beams containing waste plastic fiber (WPF). Fifteen reinforced concrete beams are moulded of (100*150*1300) mm dimension with different steel reinforcement ratio (ρ). These steel reinforcement ratio were (0.0038, 0.0207 & 0.0262). Styrene Butadine Rubber (SBR) was added as cement replacement by weight equal to (5%). Reinforced concrete beams classified in to five groups, each contains three beams with different (ρ) value. The first group conducted of reference concrete mix , the second group made with SBR modified concrete, while the three remaining groups were make by PMC containing (WPF) with volumetric ratio equal to (0.75, 1.25 & 1.75)%. This study includes compressive and flexural tests for concrete which was used in this research, load deflection relationships, the moment at mid-span with deflection and ductility were established. The results prove that, polymer modified concrete wich content waste plastic fiber has compressive and flexural strengths more than reference mixes as well as the PMC beams wich content waste plastic fiber have a stiffer response in terms of structural behaviour, more ductility and lower cracking deflection than those made by reference concretes and that refer to good role of styrene Butadiene Rubber (SBR) polymer and plastic fiber on the properties and behaviour of reinforced concrete beams.

Article
A Review of the Flexural Behavior of Steel-Concrete Composite Beams Experimentally and Numerically

Husam Khalaf Al-Ani, Ameer A Hilal, Sheelan Mahmoud Hama

Pages: 19-47

PDF Full Text
Abstract

Composite beams, made up of a concrete slab and steel in the IPE steel section, are commonly used in bridges and buildings. Their main function is to enhance structural efficiency by merging the compressive strength of concrete with the tensile resistance of steel, thereby improving overall stiffness, ductility, and load-bearing capacity. This study offers an extensive review of the flexural behavior of steel-concrete composite beams, focusing on the interplay of concrete strength, shear connector types, and interaction levels in determining structural performance. It integrates experimental and numerical research to analyze critical parameters, including load-deflection behavior, shear transfer efficiency, and crack propagation at the steel-concrete interface. The study emphasizes the effect of concrete compressive strength, particularly in ultra-high-performance concrete (UHPC) and lightweight concrete, on stiffness, ductility, and load-bearing capacity while reducing self-weight and enhancing sustainability. The study revealed that fully bonded shear connectors, using CFRP sheets and welded plates, enhance flexural capacity and stiffness. In contrast, partial bonding or pre-debonding reduces performance due to crack propagation. Indented and hot-rolled U-section connectors enhance interaction and minimize slip, while uniform distribution of shear connectors optimizes load capacity and stiffness. Lightweight concrete decreases slab weight without compromising performance, and high-performance materials such as ECC, SFRC, and UHPFRC improve strength and ductility. Numerical modeling, particularly finite element methods, and higher-order beam theories validate experimental results, providing accurate tools for predicting structural behavior under various loading and environmental conditions.

Article
Flexural Behavior of Composite Reinforced Concrete Slabs

Majid A. Adil, Dr. Oday Adnan Abdulrazzaq

Pages: 55-65

PDF Full Text
Abstract

The main objective of this study is to get more information about the flexural behavior of composite reinforced concrete slabs using two layer of concrete, first layer is light weight concrete (LWC), and second layer is normal weight concrete (NWC), through an experimental tests carried out on five samples different in their details and the position of the concrete type layer within the slabs. In this study, simply supported slabs subjected to one point load were adopted. The effect of concrete grade for the (LWC) was also studied. The light weight coarse aggregate which that used in this study is the expanded light clay aggregate (LECA). Using this type of light aggregate in concrete leads to reducing the weight of composite concrete slabs about (11.4%-17.5%). In this study, one grade of NWC was used of (25 MPa), while three of grade types were adopted for LWC (25 MPa, 18 MPa, 15 MPa).

Article
Flexural behavior of beams reinforced by GFRP bars with CFRP sheets immersed in epoxy as shear

Maadh G. Alkubaisi ., Abdulkader.I Alhadithy ., Akram S. Mahmoud .

Pages: 1-8

PDF Full Text
Abstract

Corrosion in steel bars is considered a big problem because corrosion is mainly responsible of decrease virtual age of structures and many risks indicated by deterioration. In addition, corrosion increases the cost of maintenance, particularly structures exposed to harsh environmental condition. FRP bars (Fiber Reinforced Polymer) became an alternative material from traditional steel bars. FRP had properties made it used in civil engineering sectors which are lightweight, non-corrosive, non-conductive made it a preferred alternative from steel bars in aggressive environments. FRP bars don’t have yield made it con not bind outside its linear behavior to make ties, because of the brittle behavior of FRP bars up to failure. So that, the new innovative manner by using CFRP sheets stirrups immerged by sikadur330 for produce beams can resist the harsh condition and purely reinforced with FRP in a new manner can provide stirrups in full different sizes and with lower cost. Twelve beams reinforced with GFRP bars in three different ratios of tension reinforcement (four beams for each ratio). Three control beams with steel stirrups: two beams were designed to fail in shear. Whilst, the residual nine beams with shear reinforcement made from CFRP sheets strips, immerged by sikadur330. The main variable were studied is the change in type and amount of secondary reinforcement and change in amount of primary reinforcement. The test was conduct under four point loading and in simply supported conditions. The result of tested beams illustrated that, beams had a higher percentage of tension reinforcement and shear reinforcement displayed an increasing in ultimate load about 38.1% from related control beam. While, an equivalent amount of shear reinforcement displayed an increasing in carrying load capacity up to 10%. In maximum ratio of CFRP sheets immerged by sikadur330 stirrups convert failure mode from shear to flexural indicated by crushing in cover of concrete. In addition, increased energy absorption, changed cracks orientation, increased energy absorption, decrease principal strain and increased concrete tensile.    

Article
Finite Element Analysis of Normal Strength, High Strength and Hybrid Reinforced Concrete Beams

Nura Jasim Muhammed ., Shaimaa T. Sakin ., Dunia sahib .

Pages: 90-103

PDF Full Text
Abstract

This paper presents the numerical study to simulate the flexural behavior of normal strength, high strength and hybrid reinforced concrete beams, under two points load with two different reinforcement ratio. The hybrid beam consists of two layers: the compressive layer is made of high strength concrete, and the tension layer is made of normal strength concrete. The simulation was done with a finite element model using the commercial finite element code, ANSYS (v.9.0). The concrete component material is modeled, the internal steel reinforcement modeled using ''LINK'' elements. The modeled behavior shown a good agreement with the experimental data. The maximum percentage difference in ultimate load-carrying capacity is 8% at the ultimate load level.Analytical study also included the effect of increasing the depth of the normal strength concrete for the hybrid reinforced concrete beam and the effect of increasing the compressive strength for high strength concrete and normal strength concrete respectively on the behavior and the load carrying capacity of the hybrid reinforced concrete beams.    

Article
Finite element Analysis of Large Span Continuous Two-Way Ribbed Slabs with Some Parametric Studies

Ayad Abdulhameed Sulaibi ., Dhifaf Natiq H. Al-Amiery .

Pages: 47-68

PDF Full Text
Abstract

This paper investigates the results of finite element analysis for three proposed full-scale two-way slabs. The aim of this study is to use finite element method (FEM) by using ANSYS-v15 program to analyze the proposed slabs and study the flexural behavior , especially load-deflection relationship and ultimate strength. Some parametric studies on these works are also done to cover the effect of some important parameters on the ultimate load capacity and deflection. Proposed slabs are divided into three groups with different dimensions to study the effect of using continuous large spans on the structural behavior of two-way ribbed (waffle) slabs as compared to solid slabs. In all three groups, each slab consists of three by three panels supported by concrete columns at corners. For the first group, when the void ratio (the ratio of volume of voids between ribs to total volume of ribbed slab) increases, the stiffness of waffle slab also increases. Increasing stiffness for waffle slab is continued up to some limit, and then will decrease with increasing void ratio. The best case in this example occurs when the void ratio equal to (0.667) which gives increase in stiffness of (0.347) as compared to solid slab with the same thickness. The results of ANSYS analysis shows that the best percentage of increase in deflection is (51%) with decreasing in concrete volume of (59%) for long to short span ratio of (1.5) and (300)mm thickness. For the third group of proposed models, the stiffness of two-way ribbed (waffle) slab is higher than the solid slab which has the same volume of concrete. The displacement of two-way ribbed (waffle) slab in the elastic range (at first crack ) is lower than the solid slab. In this manner, it will give the maximum reduction in concrete weight with higher thickness.    

Article
Ductility and Toughness of Unsymmetrical CFRP Strengthening of Reinforced Concrete Beams

Abdulsalam M. Njeman, Akram S. Mahmoud

Pages: 10-25

PDF Full Text
Abstract

The use of externally bonded composite materials such as carbon fiber reinforced polymers (CFRP) sheets is a modern and convenient way for strengthening and repairing reinforced concrete (RC) beams. This study presents experimental investigations on the flexural behavior of reinforced concrete beams strengthened by unsymmetrical CFRP sheets with various configurations. Effects of number of which strengthened faces of strengthening and fiber direction on the flexural strength of RC beams are examined. Six RC beams with dimensions of 100 mm * 220 mm were casted and tested under two points loading. One beam considered as a reference (unstrengthened) beam. Five residual beams were strengthened using CFRP sheets with various configurations. From the results, it was observed that all strengthened beams showed higher ultimate load capacity than that of the control beam. On the other hand, it was found that a progressive reduction in flexural ductility and toughness of beams with strengthening in one face and two faces with horizontal fiber direction. The highest decrease in flexural ductility and toughness for strengthened beams with horizontal fiber direction in comparison to control beam were 63% and 54%, respectively. On the contrary, the flexural ductility and toughness of strengthened beams increased with strengthening by vertical fiber direction. Additionally, the maximum percentage of increase in flexural ductility and toughness were 41% and 54%, respectively in comparison with control beam.

Article
Flexural Behavior of Slurry Infiltrated Waste Plastic Fiber Concrete

Dheyaa Ali, Abdulkader Al-Hadithi, Ahmed Farhan

Pages: 42-51

PDF Full Text
Abstract

Slurry infiltrated fiber concrete (SIFCON) is a relatively new high performance material and can be considered a special type of fiber concrete (FRC) with high fiber content. The matrix consists of a flowing mortar or cement slurry that must penetrate well through the network of fibers placed in the mold. SIFCON has excellent mechanical properties combined with high ductility and toughness values. SIFCON a relatively new material, is composed of mud (cement or cement and sand), water, a plasticizer (water reducer), and fibers. All previous studies have used waste steel fibers, steel fibers and other fibers, but in this study, plastic fibers were made from polyethylene terephthalate (PET) by cutting carbonated beverage bottles. The main objectives of this study are: Determination the effect of the waste plastic fiber volume ratio on the strength and deformation of (SIFCON) samples under the influence of bending loads. Both flexural strength and toughness properties were determined by testing samples (100×100×400) mm at 28 and 56 days of age. The results obtained from these tests were compared with those performed on conventional tests. Aspect Ratio equal to (36.8) and three volume ratios (3%, 5% and 7%) of the total volume of the concrete mixture were used to add fibers with different volume ratios. A conventional concrete mix was created as a reference for comparison. Bending strength and fresh concrete tests were performed. And compared with the reference mixture and according to the analysis of the results. The results showed an improvement in bending strength .It was found through the flexural examination that the flexural strength of the mixture containing fiber percentage (7%) achieved the highest strength compared to the rest of the ratios used, compared with the reference mixture (Ref.) by (32.25, 27.5)% for ages (28, 56), respectively.

Article
Experimental Study of Behavior of Reinforced Concrete One-Way Slabs Strengthened and Repaired by Ferrocement at Tension Zone

mazan D.Abdullah .

Pages: 52-67

PDF Full Text
Abstract

The principal objective of this paper is to investigation the experimental of the flexural behavior of strengthened and repaired reinforced concrete slabs with ferrocement tension zone. The result of tests on 10 simply supported one way slabs were presented, at which include 1control slab, 5strengthened slabs and 4repaired one way slabs. In the strengthened slabs, the cover of the control slab replacing with ferrocement cover, cold joint between ferrocement layer and the slab, connection type between the ferrocement layer and the slab, on the ultimate load, first crack load, the mid span-deflection, crack width and spacing were examined. In the repaired part the slabs were loaded to (55 %) of measured ultimate load of control slab, the effect of the thickness and number of wire mesh layers on crack pattern, mid span deflection and ultimate load was examined. In the repaired part the slabs were loaded to (55 %) of measured ultimate load of control slab, effect of the number of wire mesh layers of ferrocement on the mid span deflection, ultimate load and crack pattern was examined. The experimental results of strengthened and repaired slabs indicate that; the ultimate loads and mid span deflection were more effected by using ferrocement mortar at tension zone. The increase in ultimate load (8.2-18%) for strengthen slab and (9.1-17.3%) for repaired slab respect to the control slab.    

Article
Analysis of flexural behavior of one-way reinforced concrete slab casted by shotcrete contain various types of plastic fibers

Abdulfatah Jawhar, Yousif Mansoor, Abdulkader Al-Hadithi

Pages: 118-128

PDF Full Text
Abstract

The design of reinforced concrete structures has traditionally relied on empirical techniques based on experience or experimental research on actual structural members. Although this approach produces a high level of precision, it is usually exceedingly costly and time-consuming. This paper studied the convergence between theoretical analysis (ACI 318-19 Equations) and numerical analysis (FEM) of eleven one way reinforced concrete slab specimens casted by shotcrete contains three types of plastic fibers including waste plastic (PET), polypropylene (PP), and hybrid (PET+PP) fibers with three addition ratios (0.35%, 0.7%, and 1%) for each type. The results concluded that the numerical analysis (ANSYS FE model) showed a good agreement with the theoretical (ACI 318-19) of one-way slab in terms of ultimate load, with a variance, and standard deviation equal to 0.00076, and 0.027 respectively. Hence, ANSYS v15 software can be used for the analysis of reinforced concrete slabs casted by shotcrete contain waste plastic fibers and polypropylene fibers.

1 - 11 of 11 items

Search Parameters

Journal Logo
Iraqi Journal of Civil Engineering

University of Anbar

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

       
Copyright © 2025 College of Engineering, University of Anbar. All rights reserved, including those for text and data mining, AI training, and similar technologies.