Estimation of runoff in an ungauged watershed is a significant part in the process of the water resources management. In the Iraqi western desert, the accessibility reliable surface runoff knowledge is scarce, that affects a critical difficulty for the hydrologic engineers. Estimation of surface runoff quantity in valleys of interrupted flow is significant to mobilize the deficiency water resources and manage valleys flow accurately. The incorporation of the Soil Conservation Service Curve Number (SCS-CN) approach with the geographic information system (GIS) was applied for estimating runoff volume of Wadi Hijlan, Fahamy, and Zgadan. The amount of runoff of the maximum storm were 7388700 m3, 12750000 m3 and 9851590 m3 for Hijlan, Fahamy and Zgadan respectively. In addition, the results showed acquired via the SCS-CN technique, revealed that the runoff depth fluctuated from 12.5 mm to 20.3 mm for (48mm) the maximum storm of rainfall through 2018-2019. The present strategy can be used for planning and development other valleys in the western desert of Iraq.
Most of Iraqi Cities suffering from delaying of the update of Master plan, especially in the period between 1980 and 2003 the main reasons this delay are the Gulf War and the Economic Blockade. Increasing of population is the major factor causes changing in urban land use due to the human demand. These changes cause differences between master plan and real situation. To mention the spatial irregularities in Falujah City, the comparison between the master plan layers and updating land use map layers has achieved in this paper to determine the spatial change and irregularities in the city, that represent the reality of situation in case study . The changes were remarked; the areas of changes were calculated in table and thematic map were produced in our paper to illustrate the goal. This data processed using combination of GIS technique, and global positioning system GPS and geo media software.
The current study includes application of QUAL2K model to predict the dissolved oxygen (DO) and Biochemical Oxygen Demand (BOD5) of lower reach of the Diyala River in a stretch of 16.90km using hydraulic and water quality data collected from Ministry of Water Resources for the period (January-April 2014). Google Earth and Arc-GIS technique were used in this study as supported tools to provide some QUAL2K input hydro-geometric data. The model parameters were calibrated for the dry flow period by trial and error until the simulated results agreed well with the observed data. The model performance was measured using different statistical criteria such as mean absolute error (MAE), root mean square error (RMSE) and relative error (RE). The results showed that the simulated values were in good agreement with the observed values. Model output for calibration showed that DO and CBOD concentration were not within the allowable limits for preserving the ecological health of the river with range values (2.51 - 4.80 mg/L) and (18.75 – 25.10 mg/L) respectively. Moreover, QUAL2K was used to simulate different scenarios (pollution loads modification, flow augmentation and local oxygenation) in order to manage the water quality during critical period (low flow), and to preserve the minimum requirement of DO concentration in the river. The scenarios results showed the pollution loads modification and local oxygenation are effective in raising DO levels. While flow augmentation does not give significant results in which the level of DO decrease even with reduction in the BOD5 for point sources. The combination of wastewater modification and local oxygenation (BOD5 of the discharged effluent from point sources should not exceed 15 mg/L and weir construction at critical positions 6.67km from the beginning of the study region with 1m height) is necessary to ensure minimum DO concentrations.