Iraqi Journal of Civil Engineering
Login
Iraqi Journal of Civil Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
    • Reviewers of IJCE
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Journal Funding Sources
    • AI Usage and Disclosure Policy
    • Announcements
    • Contact

Search Results for hybrid

Article
Ductility, Toughness, and Flexural Performance of Hybrid Foamed- Normal Concrete Beams

Angham Jaffal, Ameer Hilal, Akram Mahmoud

Pages: 97-106

PDF Full Text
Abstract

A study examined the ductility and toughness properties of beams made of reinforced concrete, including foamed, normal, and hybrid beams. Nine reinforced concrete beams were produced: three foamed concrete beams, three normal concrete beams, and three hybrid concrete beams. Each beam possessed identical rectangular cross-sectional dimensions of 1500 mm × 250 mm × 150 mm. The flexural parameters (ultimate load, ductility, deflection, and durability) were assessed for each type of concrete utilized. The study's results showed that the load-bearing capacity of hybrid concrete beams was comparable to that of normal concrete beams, whereas foamed concrete beams exhibited slight improvement in their ability to carry loads. The ductility of reinforced foamed concrete beams was lesser than that of normal concrete. For over-reinforced beams, the ductility of hybrid concrete beams showed a significant improvement of 61% compared to foamed beams and an even more significant increase of 91.7% compared to normal beams. Furthermore, the hybrid concrete beam with over-reinforcement had a flexural toughness of 18.7% greater than the normal concrete beam. Suggested that a hybrid section comprising conventional and foamed concrete be utilized to decrease ductility and improve stiffness.

Article
Finite Element Analysis of Normal Strength, High Strength and Hybrid Reinforced Concrete Beams

Nura Jasim Muhammed ., Shaimaa T. Sakin ., Dunia sahib .

Pages: 90-103

PDF Full Text
Abstract

This paper presents the numerical study to simulate the flexural behavior of normal strength, high strength and hybrid reinforced concrete beams, under two points load with two different reinforcement ratio. The hybrid beam consists of two layers: the compressive layer is made of high strength concrete, and the tension layer is made of normal strength concrete. The simulation was done with a finite element model using the commercial finite element code, ANSYS (v.9.0). The concrete component material is modeled, the internal steel reinforcement modeled using ''LINK'' elements. The modeled behavior shown a good agreement with the experimental data. The maximum percentage difference in ultimate load-carrying capacity is 8% at the ultimate load level.Analytical study also included the effect of increasing the depth of the normal strength concrete for the hybrid reinforced concrete beam and the effect of increasing the compressive strength for high strength concrete and normal strength concrete respectively on the behavior and the load carrying capacity of the hybrid reinforced concrete beams.    

Article
Mechanical Properties and Impact Behaviour of Hybrid Fiber Reinforced Rubberized Self-Compacting Concrete

Iman Qadir, Ahmed Noaman

Pages: 69-81

PDF Full Text
Abstract

The problem of discarded tires has received a lot of attention from many authors. Incorporation of rubber aggregate recycled from waste tires is one of the solutions to this issue. This research is based on evaluating fresh and hardened properties such as slump flow, T500, segregation resistance, and L-box tests, compressive strength, impact resistance, and flexural toughness. Rubber aggregate replacements in the self-compact concrete mixes was 10% by volume of fine aggregate. Additionally, both PET and steel fibers are utilized at a volume rate of 0.25%.The outcomes indicate that introducing rubber declines rheological and hardened properties, whereas incorporating hybrid fibers enhances hardened properties such as compressive strength, impact energy, and flexural toughness. The best increase impact energy was obtained at roughly 166.6% when 0.25% hybrid fibers and 10% rubber were used. 74.21 was the greatest increase in flexural toughness when 0.25% hybrid fibers (SCCH3) were used. As for the compressive strength, it was the highest by about 11%.

Article
Mechanical Properties of Hybrid Carbon Fibers Reinforced Modified Foamed Concrete

Areej Njyman, Ameer A Hilal

Pages: 60-67

PDF Full Text
Abstract

Foamed concrete (FC) is a type of lightweight concrete characterized by a high void space ratio and cementitious binders. In this research, the fresh and mechanical properties of fiber-reinforced modified foamed concrete (made with fly ash, silica fume, and superplasticizer) with a density of 1300 kg/m³ were studied. Carbon fibers of different lengths (12 mm, 20 mm, and 28 mm) were introduced in two ways: as single fibers (12 mm) and as hybrid fibers combining lengths of 20 mm and 28 mm.
The results showed that the compressive and split tensile strengths  increased by approximately 43% compared to the control mix (modified with additives) when using a single fiber of 12 mm at a volume proportion of 0.4%. In contrast, using hybrid fibers resulted in increases of about 65% and 66% in compressive and split tensile strengths, respectively. When compared to the single fiber method, the hybrid approach improved compressive and split tensile strengths by about 15% and 16%, respectively.

Article
A Heuristic Approach for Predicting the Geometrical Packing of Cementitious Paste to Reduce CO2 Emissions in Reinforced Concrete Production

Haider Abdulhameed

Pages: 1-18

PDF Full Text
Abstract

In recent years, a number of researchers have adopted the wet packing (WP) approach to design different types of concrete mixes. Particle grading is a key to the optimization of the wet compactness density; for that reason, all empty spaces that exist in between large-size particles need to be completely filled with particles of smaller size. Previously-conducted studies in this field have been focused on measuring the particle size distribution’s packing density (PD) of the of granular matrices is the purpose of investigating how to increase the PD of cementitious materials. Thus, literature lacks models capable of predicting the optimal PD value. The current study collected and analyzed 216 datasets in order to construct a model for accurate prediction of PD. The main datasets were organized into two categories: modeling datasets and validation datasets. To configure the model in the best way, a hybrid gravitational search algorithm-artificial neural network (GSA-ANN) was also developed in this study. The findings confirmed ANN as an effective alternative for measuring the ultimate PD of cementitious pastes. ANN provided high levels of accuracy, practicality, and effectiveness in the process of predicting the PD value. Based on the final results, the implementation of the hybrid GSA-ANN technique causes a significant decrease in the number of tests conducted on experimental samples, which results in not only saving time and money, but also reducing the CO2 emission volume.  

Article
Analysis of flexural behavior of one-way reinforced concrete slab casted by shotcrete contain various types of plastic fibers

Abdulfatah Jawhar, Yousif Mansoor, Abdulkader Al-Hadithi

Pages: 118-128

PDF Full Text
Abstract

The design of reinforced concrete structures has traditionally relied on empirical techniques based on experience or experimental research on actual structural members. Although this approach produces a high level of precision, it is usually exceedingly costly and time-consuming. This paper studied the convergence between theoretical analysis (ACI 318-19 Equations) and numerical analysis (FEM) of eleven one way reinforced concrete slab specimens casted by shotcrete contains three types of plastic fibers including waste plastic (PET), polypropylene (PP), and hybrid (PET+PP) fibers with three addition ratios (0.35%, 0.7%, and 1%) for each type. The results concluded that the numerical analysis (ANSYS FE model) showed a good agreement with the theoretical (ACI 318-19) of one-way slab in terms of ultimate load, with a variance, and standard deviation equal to 0.00076, and 0.027 respectively. Hence, ANSYS v15 software can be used for the analysis of reinforced concrete slabs casted by shotcrete contain waste plastic fibers and polypropylene fibers.

Article
Investigate the Fresh and Hardened Properties of Shotcrete Concrete Contains Different Types of Plastic Fibers

Abdulfatah Jawhar, Abdulkader Al-Hadithi, Yousif Mansoor

Pages: 90-100

PDF Full Text
Abstract

Adding fibers to the shotcrete concrete mixes is very important to increase the load carrying capacity, toughness, and reducing crack propagations by bridging the cracks. On the other hand, this fiber has an effect on the fresh and hardened properties of shotcrete. In this study, fresh properties evaluated by using slump flow, , and segregation resistance tests. Hardened properties included testing of air voids, dry density, water absorption, ultrasonic pulse velocity (UPV), compressive strength, and flexural strength. This works including two types of fibers in three forms (waste plastic (PET)fibers only, polypropylene fibers (PP) only, and hybrid fiber (PET and PP)), each form added by three percentages (0.35%, 0.7%, and 1%) by volume.The results showed that the addition of 1% of all types of fiber has a negative impact on fresh properties. Especially in shotcrete containing waste plastic fiber. Also, all specimens containing fibers showed a decrease in the ultrasonic pulse velocity (UPV) and an increase in air voids and water absorption compared to the reference specimens. Also, the results clarify that the addition of waste plastic fiber to shotcrete led to a slight decrease in dry density. The highest increasing in compressive strength of shotcrete recorded by about 8.2% with using 0.35% PP fiber and highest decreasing was 20.9% with using 1% waste plastic fiber. the highest increasing in flexural strength was 62 with using 1% PP fibers.

1 - 7 of 7 items

Search Parameters

Journal Logo
Iraqi Journal of Civil Engineering

University of Anbar

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

       
Copyright © 2025 College of Engineering, University of Anbar. All rights reserved, including those for text and data mining, AI training, and similar technologies.