This research investigates the impact resistance of concrete slabs with different volume perecentage replacement ratios of waste plastic fibers (originaly made from soft drink bottles) as follows : 0.5%, 1% and 1.5%. Reference mix produced in order to compare the result. For the selected mixes, cubes with (100×100×100mm) were made to test compressive strength at age of (90) days. Flexural strength (Modulus of Rupture) test was also conducted using prisms sample of (500*100*100 mm) dimensions. The low-velocity impact test was conducted by the method of repeated falling mass where 1400gm steel ball was used. The ball falling freely from height of 2400mm on concrete panels of (500×500×50 mm) having a mesh of waste plastic fiber.The number of blows that caused first crack and final crack (failure) were determined, according to the former obtained results , the total energy was calculated. Results showed an improvement in mechanical properties for mixes containing plastic fibers compared with reference mix. For compressive strength the maximum increase in compressive strength was equal to (3.2%) at age of (90) days. Flexural strengths for mixes containing plastic fiber at ages 28, and 90 days are higher than that of these of reference mix. The maximum value of increaseing was (18%) for 28 days age of test and it was equal to (26%) for 90 days age of test for the mixture with plastic fiber content by volume equal to (1%) . Results showed a significant improvement in low-velocity impact resistance of all mixes contining waste plastic fibers when comparing with reference mix. Results illustrated that mix with (1.5%) waste plastic fibers by volume give the higher impact resistance at failure than the others. The magnitude of an increase over reference mix was equal to (340%).
This research includes the study of improving impact resistance of concrete using styrene butadiene rubber (SBR) with different weight ratios of polymer to cement 3%, 5% and 10%. Two series of polymer modified concrete (PMC) were produced the first level I with moderate compressive strength and the other level II with higher compressive strength. Cubes, prisms and panels were made as follows: Results showed an improvement in impact resistance of polymer modified concrete (PMC) over reference concrete in low-velocity and high-velocity impact properties. In conducting low-velocity impact tests, method of repeated falling mass was used: 1300gm steel ball falling freely from three heights 2400mm, 1200mm and 830mm. In high-velocity impact tests, shooting of 7.62mm bullets was applied to slab specimens from distance of 15m. The improvements were significant in low velocity impact resistance. The maximum increases were (33.33%, 75% and 83.33%) at ultimate failure for falling mass heights 2400mm, 1200mm and 830mm respectively. In high-velocity impact strength tests, maximum reductions recorded in spalling area were (18.5% and 27%) for polymer modified concrete (level I) with moderate compressive strength and polymer modified concrete (level II) with higher compressive strength.Maximum reductions recorded in scabbing area were (11.42% and 35.6%) for polymer modified concrete (level I) with moderate compressive strength and polymer modified concrete (level II) with higher compressive strength, respectively.
The accumulation of wastes, especially plastic and car tires, has become a major problem facing society today. Therefore, through this research, these wastes were recycled and used to improve some properties of concrete. Recycled crumb rubber from car tires was used instead of sand as a partial replacement of 10%. The substitution was done by two methods: random and equivalent size substitution. As well, 1%polyethylene terephthalate (PET) fiber was added by the volume of concrete to improve some properties of rubberized concrete. Compressive strength, ultrasonic pulse velocity test (UPV) were conducted in this study to investigate the efficiency of PET rubberized concrete, as well the impact resistance test was also conducted to investigated the ability of PET rubberized concrete in term of energy absorption. Slabs of size (50cm×50cm×5cm) were utilized for low velocity impact test. The results indicated there were a reduction in compressive strength and UPV results were observed in PET fiber rubberized concrete the reduction were (37.47% and 5.4%) respectively as compared with PETC mixture and the result of dynamic modulus of elasticity show the same pattern of UPV result , in contrast there was an improvement in the impact resistance when PET fiber and crumb rubber were used it increased by(117.63% and 52.9% ) for random and equivalent replacement respectively as compared with PETC.
Abstract: This work investigates some properties of chopped worn-out tires concrete (Ch.W.T.conc.). It is a type of concrete characterized by the incorporating of Ch.W.T into the mixes as a partial replacement of volume of aggregate (sand and gravel of equal proportion). Three mixes of Ch.W.T conc. In addition to the reference mixes were selected, using Partial Replacement Ratio (PRR)of 30%, 40%, and 50%.The tests which were used in this study were: compressive strength, modulus of elasticity (static and dynamic), and impact resistance (low and high velocity). It was found that incorporating Ch.W.T in concrete effect on the properties of concrete, for example the percentage decreases in compressive strength were 41%, 46.7%, and 52.4% for concrete with 30, 40, and 50% Ch.W.T. PRR by volume of aggregate (50% sand, 50% gravel) respectively. However, it gave good indicator to be utilized as a new construction material in many applications.
The problem of discarded tires has received a lot of attention from many authors. Incorporation of rubber aggregate recycled from waste tires is one of the solutions to this issue. This research is based on evaluating fresh and hardened properties such as slump flow, T500, segregation resistance, and L-box tests, compressive strength, impact resistance, and flexural toughness. Rubber aggregate replacements in the self-compact concrete mixes was 10% by volume of fine aggregate. Additionally, both PET and steel fibers are utilized at a volume rate of 0.25%.The outcomes indicate that introducing rubber declines rheological and hardened properties, whereas incorporating hybrid fibers enhances hardened properties such as compressive strength, impact energy, and flexural toughness. The best increase impact energy was obtained at roughly 166.6% when 0.25% hybrid fibers and 10% rubber were used. 74.21 was the greatest increase in flexural toughness when 0.25% hybrid fibers (SCCH3) were used. As for the compressive strength, it was the highest by about 11%.
SIFCON is a relatively new material and consists of slurry (cement or cement and sand), water, super plasticizers (water reducers) and fibers. In all previous research, steel fibers and other types of fibers were used, but in this study, waste plastic fibers Polyethylene Terephthalate (PET) created by cutting carbonated beverage bottles were used for the first time in the production of SIFCON. Three volume ratios (3%, 6% and 10%) of the total volume of the concrete mixture were used to add fibers in different volume ratios, and a reference concrete mixture was created for comparison. Tests of compressive strength, impact resistance, ultrasound transmission velocity check and other tests were performed on the constructed models. Compared with the reference concrete, according to the analysis of the results. The results showed an improvement in the compressive strength it increased by (18.5%), an increase in the impact resistance by (416.67%), and a decrease in the velocity of ultrasound by (19.42%).