Iraqi Journal of Civil Engineering
Login
Iraqi Journal of Civil Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
    • Reviewers of IJCE
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Journal Funding Sources
    • AI Usage and Disclosure Policy
    • Announcements
    • Contact

Search Results for pet

Article
Properties of Sustainable Self Compacting Concrete Containing PET Waste Plastic with Various Cement Replacement Materials

Hind abdulminem, Mahmoud Mohammed

Pages: 45-59

PDF Full Text
Abstract

This main aim of this study is evaluate wide range of fresh and hardened properties of sustainable self-compacting concrete containing various types of Cement Replacement Materials with optimum contents of Polyethylene Terephthalate PET waste plastic as fibers and fine aggregate replacement. This is to evaluate effect of the two forms of PET and to determine the best CRMs could be used with sustainable SCC. such as limestone, glass powder and fly ash with high replacement rate of 70% by weight of cement were used while fourth one (kaolin) was used with replacement rate of 20%. PET fibers were added to SCC with an aspect ratio of 24.4 and 0.7% volume fraction whereas fine aggregate partially replaced by 4% of waste plastic. Four reference mixtures contained FA, LP, GP and KA only, same four mixtures contained 0.7% PET fibers by volume, and the other same four mixtures contained 4% PET fine aggregate by volume. The obtained results all tested fresh properties, which include slump flow, T500, L-Box and segregation resistance were within the limits of the specification reported in EFNERC guidelines. Further, the forms PET have an adverse effect fresh properties of SCC. As for hardened properties (compressive strength, splitting tensile strength, flexural strength and impact strength). Further, this produced type of SCC showed an range of compressive strength (15.2-31.64 MPa) at 28 days. It can be from the current study the best CRMs to be used in SCC containing PET wastes was FA in terms of most tested properties.

Article
The possibility of using Polyethylene terephthalate (PET) as a fibre to improve the ductile behaviour of concrete

Hamid Hamood Hussein ., Osama Abd Al-Ameer ., . Mahmoud Khaled Ahmed

Pages: 30-39

PDF Full Text
Abstract

To preserve the natural materials, applying the principles of sustainable engineering, to approach the principle of zero waste and to contribute the solution of the negative environmental impact of two decades, which is caused by excessive use of bottles of polyethylene terephthalate (PET) in packaging, has led to the approach of alternative, clean and innovative technologies aimed at recycling and reuse to address this environmental problem. Proposed re-use empty bottles as a way to get rid of them and benefit from them at the same time the way, this method through which the empty bottles cutting into fibres using these fibres made of PET to improve the properties of concrete. Percentage of fiber that has been used are 1%, 1.5%, 2%, 3%, 4%, and 5%. Suitable tests were performed to measure properties of concrete reinforcement by recycle PET fibre such as compressive strength, splitting tensile strength, four-point bending strength, modulus of elasticity and toughness index. Flexural toughness tests were performed to measure the ductility capacities of reinforced concrete members with recycled PET fibre reinforced concrete. The results obtained indicate Toughness index was enhanced by using PET fibre reinforced concrete specimens, compared to no ductility performance of concrete specimens without fibre reinforcement. A significant change in ductility was when observed PET used fibre with 3%.    

Article
Investigation on the effect of Polyethylene Terephthalate (PET) fiber and crumb rubber on energy absorption capacity of concrete

Fatima Mahmoud, Ahmed Noaman

Pages: 13-25

PDF Full Text
Abstract

The accumulation of wastes, especially plastic and car tires, has become a major problem facing society today. Therefore, through this research, these wastes were recycled and used to improve some properties of concrete. Recycled crumb rubber from car tires was used instead of sand as a partial replacement of 10%. The substitution was done by two methods: random and equivalent size substitution. As well, 1%polyethylene terephthalate (PET) fiber was added by the volume of concrete to improve some properties of rubberized concrete. Compressive strength, ultrasonic pulse velocity test (UPV) were conducted in this study to investigate the efficiency of PET rubberized concrete, as well the impact resistance test was also conducted to investigated the ability of PET rubberized concrete in term of energy absorption. Slabs of size (50cm×50cm×5cm) were utilized for low velocity impact test. The results indicated there were a reduction in compressive strength and UPV results were observed in PET fiber rubberized concrete the reduction were (37.47% and 5.4%) respectively as compared with PETC mixture and the result of dynamic modulus of elasticity show the same pattern of UPV result , in contrast there was an improvement in the impact resistance when PET fiber and crumb rubber were used it increased by(117.63% and 52.9% ) for random and equivalent replacement respectively as compared with PETC.

Article
Effects of Waste Plastic PET Fibers on The Fresh and Hardened of Normal Concrete

Ali H. Allawi ., Abdulkader I. AL-Hadithi ., Akram S. Mohmoud .

Pages: 47-58

PDF Full Text
Abstract

In this paper, the laboratory experiments works were conducted to study the effect of adding recycle waste plastic as polyethene terephthalate PET fibers on the fresh properties as the slump test and hardened properties as a compressive strength, splitting strength, elastic modulus, ultrasonic pulse velocity (UPV), density, absorption, voids, flexural toughness and flexural rupture for the normal concrete. The parameter of this paper included percentage of fibers content (0%, 0.5%, 1%, and 1.5%). The geometric design of the PET fibers was a strip with dimensions 4mm width, 70mm length, and 0.035mm thickness. The aspect ratio of the PET fibers in this work was about 50. The results showed that the PET fibers improving the most properties of the normal concrete and on the other hand there is negative effect on some properties of concrete. There is a significant increase in flexural toughness, about 21.2%, while the compressive strength and splitting were increased by 5% and 18.8%, respectively. Besides this improving, using PET fibers conform to the principle of sustainability, which is reducing the pollution and the cost of waste plastic disposal. It’s observed that properties of concrete as a static modulus of Elasticity and density were decreased with the fiber percentage increased    

Article
The Effects of adding Waste Plastic Fibers on the Mechanical Properties and Shear Strength of Reinforced Concrete Beams

Abdulkader Ismail Al- Hadithi, Mustafa Ahmed Abbas

Pages: 110-124

PDF Full Text
Abstract

The concept of sustainability was developed in the last years and included the construction industry to solve the issues that pertaining by high consumption of natural sources, environmental pollution and high amount production of solid wastes. On the other hand, the plastics generation is growing exponentially every year, especially, types of Polyethylene Terephthalate (PET) that are used to produce soft drinks bottles, this study attempts to apply the concept of sustainability and reduce the environmental pollution by cutting the plastic bottles (PET) as small fibers added to the ordinary concrete to improve the shear and tensile strength of reinforced concrete beams. For this purpose, the experimental work was carried out to study the effect of waste plastic fibers (PET) on the shear behavior of seven reinforced concrete beams with dimensions of (100×150×1200) mm that were designed to fail in shear, the fibers percentages that were used in this study are (0.25, 0.5, 0.75, 1, 1.25 and 1.5%). Also, the influence of Polyethylene Terephthalate (PET) fibers on the mechanical properties of concrete was studied such as: workability, compressive strength, splitting tensile strength, static modulus of elasticity and ultrasonic pulse velocity.

Article
Experimental and Numerical Analysis of Flexural Behavior of Layered Polyethylene (PET) Fibers RC Beams

Omar Khalid Ali ., Abdulkader I. Al – Hadithi ., Ahmad Tareq Noaman .

Pages: 28-46

PDF Full Text
Abstract

Nonlinear numerical analysis of nine reinforced concrete beams with dimensions (150 x 200 x 1200) width, height and length, respectively, was carried out through the finite element theory using the ANSYS software (version 15) to know the effect of different properties of layers in the one beam on the flexural behavior of reinforced concrete beams. The beams are consisting from two layers for the one cross-section. three beams are similar properties layers and the other six are with different properties layers. The beams differ among them depending on the percentage of Polyethylene terephthalate (PET) fibers added, the location of the fibrous concrete layer as well as the thickness of the layer. PET fibers were added in proportions (0%,0.5%, and 1%) from volume of the one layer, with dimension (50 x 4 x 0.3) mm length, width, and thickness respectively. All beams are reinforced with steel reinforcement (6 mm diameter at the top, 10 mm diameter for reinforcement against shear and 12 mm diameter in the tension area). The mechanical properties of each type of mixture have been studied. It was found that the different properties of the layers significantly affected the flexural behavior of reinforced concrete beams. Also the results of the numerical modeling were very close to the laboratory results obtained from the practical study, where the largest difference between the two studies was 8% and 11% for the load and deflection respectively at the ultimate point    

Article
Analysis of flexural behavior of one-way reinforced concrete slab casted by shotcrete contain various types of plastic fibers

Abdulfatah Jawhar, Yousif Mansoor, Abdulkader Al-Hadithi

Pages: 118-128

PDF Full Text
Abstract

The design of reinforced concrete structures has traditionally relied on empirical techniques based on experience or experimental research on actual structural members. Although this approach produces a high level of precision, it is usually exceedingly costly and time-consuming. This paper studied the convergence between theoretical analysis (ACI 318-19 Equations) and numerical analysis (FEM) of eleven one way reinforced concrete slab specimens casted by shotcrete contains three types of plastic fibers including waste plastic (PET), polypropylene (PP), and hybrid (PET+PP) fibers with three addition ratios (0.35%, 0.7%, and 1%) for each type. The results concluded that the numerical analysis (ANSYS FE model) showed a good agreement with the theoretical (ACI 318-19) of one-way slab in terms of ultimate load, with a variance, and standard deviation equal to 0.00076, and 0.027 respectively. Hence, ANSYS v15 software can be used for the analysis of reinforced concrete slabs casted by shotcrete contain waste plastic fibers and polypropylene fibers.

Article
Investigate the Fresh and Hardened Properties of Shotcrete Concrete Contains Different Types of Plastic Fibers

Abdulfatah Jawhar, Abdulkader Al-Hadithi, Yousif Mansoor

Pages: 90-100

PDF Full Text
Abstract

Adding fibers to the shotcrete concrete mixes is very important to increase the load carrying capacity, toughness, and reducing crack propagations by bridging the cracks. On the other hand, this fiber has an effect on the fresh and hardened properties of shotcrete. In this study, fresh properties evaluated by using slump flow, , and segregation resistance tests. Hardened properties included testing of air voids, dry density, water absorption, ultrasonic pulse velocity (UPV), compressive strength, and flexural strength. This works including two types of fibers in three forms (waste plastic (PET)fibers only, polypropylene fibers (PP) only, and hybrid fiber (PET and PP)), each form added by three percentages (0.35%, 0.7%, and 1%) by volume.The results showed that the addition of 1% of all types of fiber has a negative impact on fresh properties. Especially in shotcrete containing waste plastic fiber. Also, all specimens containing fibers showed a decrease in the ultrasonic pulse velocity (UPV) and an increase in air voids and water absorption compared to the reference specimens. Also, the results clarify that the addition of waste plastic fiber to shotcrete led to a slight decrease in dry density. The highest increasing in compressive strength of shotcrete recorded by about 8.2% with using 0.35% PP fiber and highest decreasing was 20.9% with using 1% waste plastic fiber. the highest increasing in flexural strength was 62 with using 1% PP fibers.

Article
Mechanical Properties and Impact Behaviour of Hybrid Fiber Reinforced Rubberized Self-Compacting Concrete

Iman Qadir, Ahmed Noaman

Pages: 69-81

PDF Full Text
Abstract

The problem of discarded tires has received a lot of attention from many authors. Incorporation of rubber aggregate recycled from waste tires is one of the solutions to this issue. This research is based on evaluating fresh and hardened properties such as slump flow, T500, segregation resistance, and L-box tests, compressive strength, impact resistance, and flexural toughness. Rubber aggregate replacements in the self-compact concrete mixes was 10% by volume of fine aggregate. Additionally, both PET and steel fibers are utilized at a volume rate of 0.25%.The outcomes indicate that introducing rubber declines rheological and hardened properties, whereas incorporating hybrid fibers enhances hardened properties such as compressive strength, impact energy, and flexural toughness. The best increase impact energy was obtained at roughly 166.6% when 0.25% hybrid fibers and 10% rubber were used. 74.21 was the greatest increase in flexural toughness when 0.25% hybrid fibers (SCCH3) were used. As for the compressive strength, it was the highest by about 11%.

Article
The effect of waste polyethylene terephthalate fibers on the properties of self-compacting concrete using Iraqi local materials

Zena Mahmoud, Abdulkader Al-Hadithi, Muhannad Aldosary

Pages: 19-33

PDF Full Text
Abstract

This study was conducted to examine the impact of plastic fibers (WPFs) in an effort to improve some of the features of self-compacting concrete (SCC) using Iraqi raw materials. Waste polyethylene terephthalate fibers (waste PET fibers) from used beverage bottles were added. Some tests were carried out to determine the effects of adding WPFs on the fresh properties of new concrete, while additional tests examined the mechanical properties of hardened concrete. Because of this, self-compacting concrete blends were created with a constant water-to-binder ratio of 0.32 and a binder content of 525 kg/m3. The designated plastic fiber percentages contents were 0%, 0.5%, 0.75%, and 1% of mix volume. Self-compacting concrete mixtures' fresh characteristics were assessed for slump flow diameter, T50 slump flow concurrently, V-funnel flow concurrently, and L-box height ratio. The 28-day density, compressive strengths and flexural strength of self-compacting concretes were also measured. The use of plastic waste fibers had a slight effect on reducing the density of the produced concrete and a negative effect on the fresh properties. The compressive strengths were improved by using WPFs, with the maximum improvement equal to (11.065%) when compared to those made from the reference mix

Article
Structural Performance of Ferrocement Beams containing Plastic Waste Fibers and Longitudinal Holes Filled with Lightweight Concrete

Abdulrahman Jamal Alobeadi, Abdulkader Ismail Al-Hadithi, Muhannad Haqqi Aldosary

Pages: 1-18

PDF Full Text
Abstract

Ferrocement is a type of concrete made of mortar with different wire meshes. It has wide and varied applications in addition to its strength and durability. This research aims to combine ferrocement and sustainability, as over time, the consumption of plastics, especially plastic bottles, has increased and has serious negative effects if buried, burned, or chemically analyzed. Therefore, this research aims to benefit from this plastic waste and introduce it into the construction field by using plastic waste fibers in the concrete mixture instead of cement at a rate of 0.5% and 1% by volume. This research studied the mechanical properties of nine samples of ferrocement beams with dimensions of 1200 × 200 × 150 mm3. A longitudinal hole with a diameter of 50 mm was drilled in different places of the beams and filled with lightweight concrete to facilitate the use of the hole in service passes when drilled, with a study of the initial cracking loads and the resulting deflection in addition to the failure modes and the deflection resulting from the maximum load. The results showed an improvement in load resistance with an improvement in deflection at the maximum load, In addition to an increase in the improvement of Toughness and Stiffness of ferrocement beams.

Article
Reinforcement of sandy soil using plastic fibres made from waste plastic bottles

Younis M. Alshkane

Pages: 45-54

PDF Full Text
Abstract

Today waste plastic bottles are spread widely throughout our world especially in Kurdistan, an autonomous region in Iraq. These waste products cause many environmental problems and at the same time some soils are weak and need reinforcement using cheap materials such as Polyethylene terephthalate (PET) waste plastic bottle. Use of waste plastic bottles as a reinforcement of soil is highly recommended to reduce the amounts of plastic waste, which creates a disposal problem. In this study an attempt was made to use plastic fibres produced from waste bottles to reinforce sandy soil. This can solve both environmental and geotechnical problems. In the research, the effect of plastic fibres content as well as fibre length on shear strength parameters (cohesion and internal friction) were experimentally predicted using the direct shear test method so as to improve bearing capacity of weak soils. The results showed that under low normal stress the inclusion of plastic fibres increased both angle of internal friction and cohesion; however, under high normal stress (greater than 100 kPa) the cohesion increased and the internal friction was roughly unchanged. Also, it was concluded in this study that the suitable amount of fibers that can be added to weak soils is 1% of dry weight of sand.

Article
Compressive and Impact Loads' Effects on The Behaviour of SIFCON Made of Plastic Waste Fibers

Anas Al-Hadithi, Abdulkader Al-Hadithi

Pages: 44-54

PDF Full Text
Abstract

SIFCON is a relatively new material and consists of slurry (cement or cement and sand), water, super plasticizers (water reducers) and fibers. In all previous research, steel fibers and other types of fibers were used, but in this study, waste plastic fibers Polyethylene Terephthalate (PET) created by cutting carbonated beverage bottles were used for the first time in the production of SIFCON.   Three volume ratios (3%, 6% and 10%) of the total volume of the concrete mixture were used to add fibers in different volume ratios, and a reference concrete mixture was created for comparison. Tests of compressive strength, impact resistance, ultrasound transmission velocity check and other tests were performed on the constructed models. Compared with the reference concrete, according to the analysis of the results. The results showed an improvement in the compressive strength it increased by (18.5%), an increase in the impact resistance by (416.67%), and a decrease in the velocity of ultrasound by (19.42%).

Article
Mechanical Properties And Flexural Behavior of reinforced Polymer Modified Concrete beams enhanced by Waste Plastic Fibers (WPF)

Dr.Abdulkader Ismail Al- Hadithi, Shahad Younus Thabet Al-Waysi

Pages: 16-32

PDF Full Text
Abstract

This research include the study of flexural behavior of polymer modified concrete beams containing waste plastic fiber (WPF). Fifteen reinforced concrete beams are moulded of (100*150*1300) mm dimension with different steel reinforcement ratio (ρ). These steel reinforcement ratio were (0.0038, 0.0207 & 0.0262). Styrene Butadine Rubber (SBR) was added as cement replacement by weight equal to (5%). Reinforced concrete beams classified in to five groups, each contains three beams with different (ρ) value. The first group conducted of reference concrete mix , the second group made with SBR modified concrete, while the three remaining groups were make by PMC containing (WPF) with volumetric ratio equal to (0.75, 1.25 & 1.75)%. This study includes compressive and flexural tests for concrete which was used in this research, load deflection relationships, the moment at mid-span with deflection and ductility were established. The results prove that, polymer modified concrete wich content waste plastic fiber has compressive and flexural strengths more than reference mixes as well as the PMC beams wich content waste plastic fiber have a stiffer response in terms of structural behaviour, more ductility and lower cracking deflection than those made by reference concretes and that refer to good role of styrene Butadiene Rubber (SBR) polymer and plastic fiber on the properties and behaviour of reinforced concrete beams.

Article
Flow ability and Mechanical Properties of Shotcrete concrete incorporated with Waste Plastic Fibers

Amer Enad, Abdulkader Al-Hadithi, Yousif Mansoor

Pages: 8-15

PDF Full Text
Abstract

Polyethylene terephthalate (PET) fiber is a green-friendly fiber that is capable of enhancing the mechanical properties of wet-mixing shotcrete. The main purpose of this study is to see how varied volumes of waste plastic fibers (WPF) affect the flowability and mechanical properties of wet-mix shotcrete. For this aim, a variety of experimental tests based on WPF content were chosen. Fresh and mechanical tests included slump, T500, density, compressive strength, and splitting strength were applied. The results shown a improved in shotcrete performance as the WPF content increased. Among all fitting correlations, density and compressive strength revealed the strongest linear ship association. Due to greater interlocking between WPF and concrete matrix, WPF was a major use in enhancing splitting tensile strength. WPF had the most influence on splitting strength, with 23–31 percent, 7–23 percent, and 6–38 percent for 7, 14, and 28-day, respectively.

Article
The Effects of Adding Waste Plastic Fibers (WPFs) on Some Properties of Self Compacting Concrete using Iraqi local Materials

Waseem Khairi Mosleh Frhaan, Abdulkader I. Al-hadithi

Pages: 1-20

PDF Full Text
Abstract

This study presents an experimental research of Self-Compacting Concrete (SCC) properties containing waste plastic fibers (WPF). Adding waste plastics which resulting from cutting PET bottles as fibers to SCC with aspect ratio (l/d) equal to (28). To illustrate the effects of WPFs on the SCC, the current study was divided into two parts, the first part shows the effect of adding plastic fibers on the properties of fresh SCC, which include the ability flow, spread, passing and resistance to segregation, and the second part to evaluate the properties of hardened (mechanical) destructive and non-destructive, which include compression strength, flexural strength and ultrasonic pulse velocity test. One reference concrete mix was conducted and eight mixes contain WPF has been producing self-compacting concrete mixers containing a different volumetric ratio of plastic fibers (Vf) % percentages (0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2) %. Three cubes samples were prepared for testing the compressive strength, three prisms were prepared for the test modules of rupture, one cylinder were prepared testing the modulus of elasticity. The experiments show that adding plastic fibers to SCC leads to an increase in the compression strength and modulus of rupture at 28-day as follows (42.30)% and (73.12)% respectively for mix ratio (1.5)% in comparison with the reference mix, which represent the best ratio of fibers, as such the results of testing the fresh concrete containing waste fibers showed that adding these fibers led a reduction in workability for SCC.

Article
The Effect of Adding Waste Plastic Fibers on some Engineering Properties of Roller Compacted Concrete

Adil N. Abed, Abdulkader I. Al-hadithi, Ahmed Salie Mohammed

Pages: 31-39

PDF Full Text
Abstract

This research includes producing compacted concrete by rolling method and the possibility for using in highway construction field with studying the influence of adding waste plastic fiber resulting from manual cutting for bottles used in the conservation gassy beverage on different characteristics of this type of concrete. For the purpose of selecting mix proportions appropriate for rolling compacted concrete (RCC). Approved design method for ACI-committee (5R-207 .1980) was selected for this research. Destroying plastic waste by volumetric rates ranging between (0.5%) to (2%) was approved. Reference mix was produced for comparison. Tests were conducted on the models produced from rolling compacted concrete like compressive strength, flexural strength and split tensile strength. The analysis of the results showed that the use of plastic waste fibers (1%) has led to improve the properties of each of the compressive strength and flexural strength and split tensile strength compared with reference concrete. Compressive strength in 28 days with fiber ratio (1%) is higher than (52.15%) from compressive strength in 28 days of reference concrete. It can be also observed that each of the flexural strength and split tensile strength increases by (17.86, 25.61)%, respectively, from flexural strength and split tensile strength for the reference mix

Article
Flexural Behavior of Slurry Infiltrated Waste Plastic Fiber Concrete

Dheyaa Ali, Abdulkader Al-Hadithi, Ahmed Farhan

Pages: 42-51

PDF Full Text
Abstract

Slurry infiltrated fiber concrete (SIFCON) is a relatively new high performance material and can be considered a special type of fiber concrete (FRC) with high fiber content. The matrix consists of a flowing mortar or cement slurry that must penetrate well through the network of fibers placed in the mold. SIFCON has excellent mechanical properties combined with high ductility and toughness values. SIFCON a relatively new material, is composed of mud (cement or cement and sand), water, a plasticizer (water reducer), and fibers. All previous studies have used waste steel fibers, steel fibers and other fibers, but in this study, plastic fibers were made from polyethylene terephthalate (PET) by cutting carbonated beverage bottles. The main objectives of this study are: Determination the effect of the waste plastic fiber volume ratio on the strength and deformation of (SIFCON) samples under the influence of bending loads. Both flexural strength and toughness properties were determined by testing samples (100×100×400) mm at 28 and 56 days of age. The results obtained from these tests were compared with those performed on conventional tests. Aspect Ratio equal to (36.8) and three volume ratios (3%, 5% and 7%) of the total volume of the concrete mixture were used to add fibers with different volume ratios. A conventional concrete mix was created as a reference for comparison. Bending strength and fresh concrete tests were performed. And compared with the reference mixture and according to the analysis of the results. The results showed an improvement in bending strength .It was found through the flexural examination that the flexural strength of the mixture containing fiber percentage (7%) achieved the highest strength compared to the rest of the ratios used, compared with the reference mixture (Ref.) by (32.25, 27.5)% for ages (28, 56), respectively.

Article
Behaviour of Waste Plastic Fiber Concrete Slabs Under Low Velocity Impact

Abdulkader Al-Hadithi, Ahmed Al-Ejbari, Ghassan Jameel

Pages: 135-148

PDF Full Text
Abstract

This research investigates the impact resistance of concrete slabs with different volume perecentage replacement ratios of waste plastic fibers (originaly made from soft drink bottles) as follows : 0.5%, 1% and 1.5%. Reference mix produced in order to compare the result. For the selected mixes, cubes with (100×100×100mm) were made to test compressive strength at age of (90) days. Flexural strength (Modulus of Rupture) test was also conducted using prisms sample of (500*100*100 mm) dimensions. The low-velocity impact test was conducted by the method of repeated falling mass where 1400gm steel ball was used. The ball falling freely from height of 2400mm on concrete panels of (500×500×50 mm) having a mesh of waste plastic fiber.The number of blows that caused first crack and final crack (failure) were determined, according to the former obtained results , the total energy was calculated. Results showed an improvement in mechanical properties for mixes containing plastic fibers compared with reference mix. For compressive strength the maximum increase in compressive strength was equal to (3.2%) at age of (90) days. Flexural strengths for mixes containing plastic fiber at ages 28, and 90 days are higher than that of these of reference mix. The maximum value of increaseing was (18%) for 28 days age of test and it was equal to (26%) for 90 days age of test for the mixture with plastic fiber content by volume equal to (1%) . Results showed a significant improvement in low-velocity impact resistance of all mixes contining waste plastic fibers when comparing with reference mix. Results illustrated that mix with (1.5%) waste plastic fibers by volume give the higher impact resistance at failure than the others. The magnitude of an increase over reference mix was equal to (340%).

1 - 19 of 19 items

Search Parameters

Journal Logo
Iraqi Journal of Civil Engineering

University of Anbar

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

       
Copyright © 2025 College of Engineering, University of Anbar. All rights reserved, including those for text and data mining, AI training, and similar technologies.