The Impact of silica fume existence and its content with the duration of curing on concrete compressive strength (ordinary and high) has investigated experimentally. Two mixture sets were done in this work to examine the concrete ordinary and high strength. Every set involved four mixtures with varied silica fume proportions as a substitution of cement with (0, 5, 10 and 15 percent). Ninety-six cubes of concrete were prepared and cured by immersion in water to the required age (7, 28, 90 and 150 days). In ordinary concrete and high strength concrete, the results demonstrate that when silica fume used as a substitution with 15 %, the compressive strength of concrete gave the highest value. As compared with concrete having nil content of silica fume, the earned strength for high compressive concrete consisting of silica fume was relatively less than the corresponding ordinary concrete strength. However, continuously curing with water after 28 days produced a considerable increase in the compressive strength of concrete; such an increase in compressive strength was greater in the existence of silica fume
This paper presents and discuses some properties of self-compacting concrete SCC containing optimum contents of different types of cement replacement materials CRMs like fly ah, silica fume and limestone powder. The purpose is to evaluate the performance of SCC mixtures to choose the best one for strengthening purposes of corroded reinforcement concrete beams. In a preliminary work, the theoretical optimum contents of the above materials were specified using statistical program (Minitab) and they were verified experimentally. This verification based on checking fresh properties such as slump flow, T500, L-box and segregation resistance as well as compressive strength. The optimum contents of CRMs: 14% fly ash, 19% limestone, 18% silica fume plus fly ash and 11% silica fume were selected and studied. Compressive, tensile, and flexural strengths were examined, as well as the modulus of elasticity, water absorption and porosity (which reflect the related durability properties) were examined. Test results show that the optimum verified theoretical percentage of a combination of fly ash and silica fume, at 18% by weight of cement with a fixed water-binder ratio of 0.33 showed the best overall performance. It was deduced that this SCC mix gave the highest mechanical properties and the lowest porosity and water absorption. For example, the compressive strength increased by 36.25% as compared to SCC mix containing limestone powder. Further, the porosity and water absorption decreased by 120.8% and 164% respectively as compared to the above same SCC mix. Thus, it could be used for strengthening purpose of corroded RC beams.
The earth-fill dams are simple structures which are able to prevent the sliding and overturning because of their self-weight. Due to lack of suitable clay materials, the dams may be designed as zoned core which is composed of three vertical zones contains central impermeable core and two permeable shells on their two sides of the core. Impervious core is used in zoned earth dam to reduce the quantity of seepage through the body of the dam and to relief part of risk of piping and erosion in the downstream side. This study aims to study the soil properties that is used as a core of earth dam through a series of laboratory experiments that were carried out a several soil samples mixed with both lime and silica fume, in order to stabilize the soil. The process of stabilization aims to increase the soil strength and reducing its permeability and compressibility. Test results show that adding lime and silica fume to the soil decreases the permeability of soil with different cases of study, the percentage of decreases in case of standard compaction about (21%-90%) while in modified compaction test the permeability decreases in range (41.7%-91.3%). Also the unconfined compressive strength of the soil increasing significantly in both cases of compaction which were standard and modified. When add the materials, these values were increased in range (76%-90%) for samples from standard compaction test, while it being (0.21%-42%) in modified compaction test.
Abstract:-This investigation studies the mechanical characteristics of carbon fiber reinforcedlight weight aggregate concrete, containing different percentages of fiber. The effect ofusing high range water reducing agent (SP) with 8% silica fume (SF) and 8% highreactivity Metakaolin (HRM), as a partial replacement by weight of cement, on thebehavior of (LWA) concrete is also studied.This investigation was carried out using several tests. These tests were workability freshand hardened density, compressive strength, splitting tensile strength and modulus ofrupture. Tests were performed for specimens at ages of (7,28,60,90 and 180) days . Thetest results indicated that the inclusion of carbon fiber to the light weight concrete mix didnot affect the compressive strength significantly, while the splitting tensile strength andthe modulus of rupture were improved significantly. The addition of silica fume andmetakaolin improves the compressive, splitting tensile , and modulus of rupture strengthsof carbon fiber light weight concrete. The average improvement was about (26.5%, 71%and 73 %) respectively for carbon fiber LWA concrete containing silica fume and (28%,72% and 75%) respectively for carbon fiber LWA concrete containing high reactivitymetakaolin.
Foamed concrete (FC) is a type of lightweight concrete characterized by a high void space ratio and cementitious binders. In this research, the fresh and mechanical properties of fiber-reinforced modified foamed concrete (made with fly ash, silica fume, and superplasticizer) with a density of 1300 kg/m³ were studied. Carbon fibers of different lengths (12 mm, 20 mm, and 28 mm) were introduced in two ways: as single fibers (12 mm) and as hybrid fibers combining lengths of 20 mm and 28 mm.
The results showed that the compressive and split tensile strengths increased by approximately 43% compared to the control mix (modified with additives) when using a single fiber of 12 mm at a volume proportion of 0.4%. In contrast, using hybrid fibers resulted in increases of about 65% and 66% in compressive and split tensile strengths, respectively. When compared to the single fiber method, the hybrid approach improved compressive and split tensile strengths by about 15% and 16%, respectively.
Concrete is produced from millions of tons of Cement, which emits a significant amount of carbon dioxide from cement mills and contributes to global warming. Therefore, it is important to seek out less expensive and more environmentally friendly substitutes for OPC. While various substitutes are available, such as recycled glass, marble, silica fume fly ash, or agricultural waste like rice husks or wheat straw, the performance of concrete is significantly affected when bentonite is used as a replacement for Cement. This study aims to evaluate Jhelum bentonite, which is located at 32°56′ north and 73°44′ east longitude, as a replacement for Cement in different ratios (0:100, 10:90, 20:80, 30:70, and 40:60) to improve the durability of the system as more bentonite is used to replace conventional Portland cement, the workability, density, and water absorption of the new concrete all decrease. Compressive Strength, Tensile Strength, and flexural Strength of blocks and cylinders were tested after being cured for 7 and 28 days. Analysis of these strength tests revealed that the mixes containing bentonite were weaker after 7 days compared to 28 days, and the Strength of blocks was reasonable compared to cylinders.Keywords: Bentonite, Concrete, Compressive Strength, Tensile Strength.