This study investigates the strength performance and microstructural changes of a sandy gypseous soil improved with fly ash-based geopolymer, for shallow and deep applications. Different proportions of geopolymer were added to a natural gypseous soil having a gypsum content of 30% to 40% with different water contents. The fly ash was activated using sodium hydroxide with molar concentrations 8 and 12 molar and sodium silicate. The ratios of the fly ash to the activator were 1 and 2. Specimens were cured for different ages at 30°C. To simulate the field conditions, a number of specimens were immersed in a salt-saturated solution. Materials performance was evaluated at the macro level by performing unconfined compression test and at micro level by performing scanning electron microscopy test. The study showed that an increase in the molar concentration of sodium hydroxide and of the binder ratio improved material’s strength particularly at lower water contents of the soil. Increasing the binder content to about 30% improved the strength by enhancing the bonding between the soil particles. On the other hand, immersing the samples in the salt solution led, in most cases, to breakdown of the geopolymer network, as confirmed by the SEM images. It was concluded that the fly ash geopolymer-soil mixtures under investigation can provide as high as 8 MPa uniaxial strength under no sulfate attack. However, under sulfate attack condition, this strength can decrease to as low as 0.5 MPa. Even under the worst case, the later strength can be just enough to support shallow foundations rested on a saturated gypseous soil.
Organic soils are problematic soil for various engineering applications due to their high compressibility and low shear strength which need to be improved. For many soil improvement techniques, using waste materials, such as fly ash (FA), is a practical and sustainable process. In this research, FA and geopolymer were used e used to reduce organic soil's compressibility. A one-dimensional consolidation test was performed to evaluate the organic soil's consolidation and compressibility properties. The geopolymer was prepared using 20% FA and of sodium hydroxide ratio and sodium silicate alkali solutions. The geopolymer specimens were first cured for 2 hours at 45 and 65 oC, then cured for further 28 days at room temperature. The consolidation test results showed that FA-based geopolymer is effective in stabilizing organic soils due to the observed improvement in the compressibility, consolidation, and permeability characteristics. The compression index decreased by 98.16%, and the permeability decreased by 95%.
The aim of this study is to investigate the effect of adding recycled materials such as CKD and RAP to weak cohesive soils, in addition to evaluate the change in the strength of these soils. This study was conducted on soil type MH, and only RAP particles finer than 10 mm were used in preparing the mixtures. 7, 14, and 28 days were selected as curing periods for soil- CKD and soil- CKD- RAP mixtures to obtain the effect of curing periods on soil improvement. The results showed that adding 20% of CKD to the natural soil increased the unconfined compression strength UCS from 0.43 MPa to 2.6 MPa at a 28-day curing period. Also, the results showed that adding 25% of RAP to the soil- 20% CKD mixture increased the UCS value to 5.3 MPa after 28 days of the curing period. The final results showed that the optimum contents of CKD and RAP added to the cohesive soil were 20% and 25%, respectively, while the optimum curing period was 28 days