The present study, concern about an experimental work to study the stress-strain relationship of steel-fiber reinforced polymer modified concrete under compression. Four different mixes with weight proportions of (1:2:4) were used as; normal weight concrete (NC), polymer modified concrete (PMC) with (10%) of cement weight and two mixes of steel-fiber polymer modified concrete with (1%) and (2%) volume fraction of steel fiber, (SMPC). The influences of polymer and fiber addition on peak stress, strain at peak stress and the stress-strain curve were investigated for concrete mixes used. For all selected mixes, cubes (150×150×150mm) were made for compressive strength test at (28) days while stress-strain test was caried out on cylinders (150 mm 300 mm) at the same age. Results showed an improvement in compressive strength of polymer modified concrete (PMC) over reference mix, the maximum increase of it was (13.2 %) at age of (28) days. There is also an increase in compressive strength with increasing of steel fibers content with comparison to normal concrete, the maximum increases of it were (19.6% and 25.2%) of mixes with 1% and 2% fiber content by volume respectively. In terms of modulus of elasticity, the addition of polymer and the presence of fibers cause a significant increase in it. The peak of stress- strain curve for normal strength concrete (Mix No.1) was linear whereas it was more sharp for the other mixes. The behaviour of normal strength concrete (Mix No.1) was linear up to 20 % of ultimate strength, while for the mixes with the higher strength i.e. polymer modified concrete and fibers reinforced concrete (Mixes No.2, 3 and 4) the linear portion increases up to about 50 % of ultimate strength
Abstract: The presented investigation studies the effect of steel fiber content on the dynamic properties of High Performance Steel Fiber Concrete by using non-destructive testes; Vibration tests (Electrodynamics tests) were used to obtain the dynamic modulus of elasticity, dynamic shear modulus (modulus of rigidity), damping capacity, and dynamic Poisson‘s ratio. The results demonstrated in general an improvement in dynamic properties, which were tested for example, the percentage increasing in compressive strength relative to the reference concrete were 2.5%, 6.6%, 5.8% for High Performance Concrete (HPC) with 0.5%, 1%, and 1.5% steel fiber by volume of concrete respectively.
This study presents an experimental investigation performed to investigate the using of steel fiber reinforced concrete (SFRC) as an alternative to negative reinforcement in continuous RC thin slab panels. More rational way has been used by replacing negative reinforcement near interior supports by steel fiber reinforced concrete (SFRC). Tests were carried out on four slab panels, simply supported under single point loading. One of which were made fully with NSC, and the others were made partially with SFRC in negative moment zone. Experimental results show that the ultimate load capacity are increased (23% -58%) and the cracking loads are increased (25% -62.5%) for tested specimens strengthened with SFRC, in comparison with the reference specimens. Crack arrest mechanism of steel fibers limits crack propagation, improves the ultimate and tensile strength. So, more practical technique can be concluded from this study and employed in manufacturing of thin slabs.
Abstract This research studies the effect of adding steel fiber in two percentage 0.5% and 1% by volume on plain structural lightweight concrete (SLWC) produced by using crushed bricks as coarse lightweight aggregates (LWA) in a lightweight concrete mix designed according to ACI committee 211-2-82 with mix proportion 1:1.12 :3.35 by volume .The wc equal to 0.5 and cement content 550 kgm3. Different tests where performed for fresh and hardened SLWC such slump test ,fresh and hardened unit weight ,compressive strength and two indirect tests of tensile strength (splitting tensile and flexural strength). The results demonstrated that the effect of addition of steel fiber was more pronounced on the tensile strength of SLWC than the compressive strength of such concrete .The maximum increase of compressive ,splitting tensile and flexural strengths at 28-days were 38.8,77.12 and 111.2 % in the SLWC containing 1% fiber. On the other hand the rate of strength gain between 3 and 28 days was constant on compressive strength of plain concrete and that containing steel fiber while this rate was clearly increase on tensile strength especially flexural strength.
Abstract: This research is devoted to investigate the behavior of steel fiber reinforced concrete members subjected to blast loading. Material nonlinearity due to nonlinear response of concrete in compression, tensile cracking, strain softening after cracking, crushing of concrete and the yielding of steel reinforcement are considered. Three-dimensional finite element is used with eight and twenty-node are hexahedral isoparametric brick element for the spatial discretization. In the idealization of the reinforced concrete structures, the steel reinforcement is incorporated in the concrete brick element as a smeared layer assuming perfect bond. Concrete is modeled as an elasto-viscoplastic model in compression and as a linear elastic strain softening in tension. The steel reinforcement is assumed to have uniaxial properties in the direction of the bars. A classical elasto-viscoplastic model is used to model the reinforcement. Some numerical problems are solved and compared with other studies to verify the applicability and accuracy. Parametric study to investigate the effect of some important parameters has been carried out. The results showed that the use of steel fibers in members subjected to dynamic loading lead to better performance.
The current research’s purpose is to examine how Ultra-High Performance Fiber Concrete (UHPFC) holds up in terms of strength and durability for strengthening purposes. For this reason, the experimental and the theoretical studies in this research attempted to assess different fresh and hardened properties of a variety of ultra-high performance combinations. Steel fibers were utilized to differentiate all of the program's combinations at percentages of 0.25 %, 0.5 %, 0.75 %, 1%, and 1.25 % by volume. Mini flow slump, compressive and flexural strength, ultrasonic pulse velocity, water absorption, and porosity tests were all used to examine the performance of the strength and durability of the material. The findings of this study's trials showed that steel fibers increased the strength of UHPFC. The steel fiber ratio of 1% gave the maximum compressive strength, whereas 1.25 percent yielded the highest flexural strength. Because the fibers function as a bridge, preventing internal breaking, the tensile test results were improved as the proportion of steel fiber rises. Through the use of the multi-objective optimization approach, the optimal ratio of fibers was chosen at the end of the laboratory work since it has the best durability and strength characteristics. Statistical software (Minitab 2018) was used to find the optimal combination of UHPFC that meets all of the requirements. The theoretical selected optimum ratio of 0.77% of fibers obtained from the optimization was evaluated and validated experimentally. The optimized mix provided 90.28 MPa, 14.6 MPa, and 20.2 MPa for compressive, splitting tensile and flexural tests respectively with better durability performance compared to other mixes prepared in this investigation.
The main rule of this search is determining the effect adding various types of fiber to normal concrete mixes on performance normal strength concrete ,it has been used three types of fibers (glass, short steel fibers& long steel fibers)with different contents in mixes(0.5,1.0&1.5%) respectively. It had been cast (210) cubes with dimensions (100×100×100m) mm,(160) cylinders with dimensions (100×200) mm , All concrete specimens heated under different temperatures (100,200,300,400,500 &600 C°) at age 28 days, so that it had been stayed under specified temperatures about two hours then , cooled in naturally in room temperatures and tested in compressive for cubes &splitting strength for cylinders. The results stated that the fiber improve the compressive strength under fire temperatures about (87%) compare with reference mixes, and the fiber glass take little differences than steel fiber in splitting strength when its content reach (1.0,1.5%) respectively and using this types of fibers improved the properties of concrete against the fire.