The use of externally bonded composite materials such as carbon fiber reinforced polymers (CFRP) sheets is a modern and convenient way for strengthening and repairing reinforced concrete (RC) beams. This study presents experimental investigations on the flexural behavior of reinforced concrete beams strengthened by unsymmetrical CFRP sheets with various configurations. Effects of number of which strengthened faces of strengthening and fiber direction on the flexural strength of RC beams are examined. Six RC beams with dimensions of 100 mm * 220 mm were casted and tested under two points loading. One beam considered as a reference (unstrengthened) beam. Five residual beams were strengthened using CFRP sheets with various configurations. From the results, it was observed that all strengthened beams showed higher ultimate load capacity than that of the control beam. On the other hand, it was found that a progressive reduction in flexural ductility and toughness of beams with strengthening in one face and two faces with horizontal fiber direction. The highest decrease in flexural ductility and toughness for strengthened beams with horizontal fiber direction in comparison to control beam were 63% and 54%, respectively. On the contrary, the flexural ductility and toughness of strengthened beams increased with strengthening by vertical fiber direction. Additionally, the maximum percentage of increase in flexural ductility and toughness were 41% and 54%, respectively in comparison with control beam.
The current research’s purpose is to examine how Ultra-High Performance Fiber Concrete (UHPFC) holds up in terms of strength and durability for strengthening purposes. For this reason, the experimental and the theoretical studies in this research attempted to assess different fresh and hardened properties of a variety of ultra-high performance combinations. Steel fibers were utilized to differentiate all of the program's combinations at percentages of 0.25 %, 0.5 %, 0.75 %, 1%, and 1.25 % by volume. Mini flow slump, compressive and flexural strength, ultrasonic pulse velocity, water absorption, and porosity tests were all used to examine the performance of the strength and durability of the material. The findings of this study's trials showed that steel fibers increased the strength of UHPFC. The steel fiber ratio of 1% gave the maximum compressive strength, whereas 1.25 percent yielded the highest flexural strength. Because the fibers function as a bridge, preventing internal breaking, the tensile test results were improved as the proportion of steel fiber rises. Through the use of the multi-objective optimization approach, the optimal ratio of fibers was chosen at the end of the laboratory work since it has the best durability and strength characteristics. Statistical software (Minitab 2018) was used to find the optimal combination of UHPFC that meets all of the requirements. The theoretical selected optimum ratio of 0.77% of fibers obtained from the optimization was evaluated and validated experimentally. The optimized mix provided 90.28 MPa, 14.6 MPa, and 20.2 MPa for compressive, splitting tensile and flexural tests respectively with better durability performance compared to other mixes prepared in this investigation.
This paper presents and discuses some properties of self-compacting concrete SCC containing optimum contents of different types of cement replacement materials CRMs like fly ah, silica fume and limestone powder. The purpose is to evaluate the performance of SCC mixtures to choose the best one for strengthening purposes of corroded reinforcement concrete beams. In a preliminary work, the theoretical optimum contents of the above materials were specified using statistical program (Minitab) and they were verified experimentally. This verification based on checking fresh properties such as slump flow, T500, L-box and segregation resistance as well as compressive strength. The optimum contents of CRMs: 14% fly ash, 19% limestone, 18% silica fume plus fly ash and 11% silica fume were selected and studied. Compressive, tensile, and flexural strengths were examined, as well as the modulus of elasticity, water absorption and porosity (which reflect the related durability properties) were examined. Test results show that the optimum verified theoretical percentage of a combination of fly ash and silica fume, at 18% by weight of cement with a fixed water-binder ratio of 0.33 showed the best overall performance. It was deduced that this SCC mix gave the highest mechanical properties and the lowest porosity and water absorption. For example, the compressive strength increased by 36.25% as compared to SCC mix containing limestone powder. Further, the porosity and water absorption decreased by 120.8% and 164% respectively as compared to the above same SCC mix. Thus, it could be used for strengthening purpose of corroded RC beams.
This study introduce a review on structural behavior of different structural elements such as beams, slabs, column….etc, under different type of loading. Through this review one can see the effectiveness of using ferrocement in casing slabs, beams subjecting to bending or impact load. Also the ferrocement make an essential role in strengthening of damage columns and beams.
This research includes studying the possibility of producing a new kind of No-fines concrete by replacing granules of coarse aggregates with grains results from the fragmentation of industrial waste of polystyrene. This replacing were with different volumetric proportions of coarse aggregate, and theses volumetric ratios were equal to (5%, 10%, 15% and 25%). Waste plastic fibers (WPFs) resulting from cutting of soft drinks bottles were added for strengthening this new kind of concrete. Mixing ratio was equal to (1:5) (cement: coarse aggregate) by weight. One reference mix was produced for comparative purpose. Compressive strength, flexural strength and density tests were conducted, it was examined three samples of each examination and taking the average. Compressive strength values of the new sustainable concrete were ranged from 10 MPa to 12.4 MPa at age of test equal to 28 days, while the average value of the density of this concrete at the same age reaches 1930 kg/m3. This average value of modulus of rupture was equal to 2.36 MPa at 28-day age test.
The principal objective of this paper is to investigation the experimental of the flexural behavior of strengthened and repaired reinforced concrete slabs with ferrocement tension zone. The result of tests on 10 simply supported one way slabs were presented, at which include 1control slab, 5strengthened slabs and 4repaired one way slabs. In the strengthened slabs, the cover of the control slab replacing with ferrocement cover, cold joint between ferrocement layer and the slab, connection type between the ferrocement layer and the slab, on the ultimate load, first crack load, the mid span-deflection, crack width and spacing were examined. In the repaired part the slabs were loaded to (55 %) of measured ultimate load of control slab, the effect of the thickness and number of wire mesh layers on crack pattern, mid span deflection and ultimate load was examined. In the repaired part the slabs were loaded to (55 %) of measured ultimate load of control slab, effect of the number of wire mesh layers of ferrocement on the mid span deflection, ultimate load and crack pattern was examined. The experimental results of strengthened and repaired slabs indicate that; the ultimate loads and mid span deflection were more effected by using ferrocement mortar at tension zone. The increase in ultimate load (8.2-18%) for strengthen slab and (9.1-17.3%) for repaired slab respect to the control slab.