The use of externally bonded composite materials such as carbon fiber reinforced polymers (CFRP) sheets is a modern and convenient way for strengthening and repairing reinforced concrete (RC) beams. This study presents experimental investigations on the flexural behavior of reinforced concrete beams strengthened by unsymmetrical CFRP sheets with various configurations. Effects of number of which strengthened faces of strengthening and fiber direction on the flexural strength of RC beams are examined. Six RC beams with dimensions of 100 mm * 220 mm were casted and tested under two points loading. One beam considered as a reference (unstrengthened) beam. Five residual beams were strengthened using CFRP sheets with various configurations. From the results, it was observed that all strengthened beams showed higher ultimate load capacity than that of the control beam. On the other hand, it was found that a progressive reduction in flexural ductility and toughness of beams with strengthening in one face and two faces with horizontal fiber direction. The highest decrease in flexural ductility and toughness for strengthened beams with horizontal fiber direction in comparison to control beam were 63% and 54%, respectively. On the contrary, the flexural ductility and toughness of strengthened beams increased with strengthening by vertical fiber direction. Additionally, the maximum percentage of increase in flexural ductility and toughness were 41% and 54%, respectively in comparison with control beam.
A study examined the ductility and toughness properties of beams made of reinforced concrete, including foamed, normal, and hybrid beams. Nine reinforced concrete beams were produced: three foamed concrete beams, three normal concrete beams, and three hybrid concrete beams. Each beam possessed identical rectangular cross-sectional dimensions of 1500 mm × 250 mm × 150 mm. The flexural parameters (ultimate load, ductility, deflection, and durability) were assessed for each type of concrete utilized. The study's results showed that the load-bearing capacity of hybrid concrete beams was comparable to that of normal concrete beams, whereas foamed concrete beams exhibited slight improvement in their ability to carry loads. The ductility of reinforced foamed concrete beams was lesser than that of normal concrete. For over-reinforced beams, the ductility of hybrid concrete beams showed a significant improvement of 61% compared to foamed beams and an even more significant increase of 91.7% compared to normal beams. Furthermore, the hybrid concrete beam with over-reinforcement had a flexural toughness of 18.7% greater than the normal concrete beam. Suggested that a hybrid section comprising conventional and foamed concrete be utilized to decrease ductility and improve stiffness.
The problem of discarded tires has received a lot of attention from many authors. Incorporation of rubber aggregate recycled from waste tires is one of the solutions to this issue. This research is based on evaluating fresh and hardened properties such as slump flow, T500, segregation resistance, and L-box tests, compressive strength, impact resistance, and flexural toughness. Rubber aggregate replacements in the self-compact concrete mixes was 10% by volume of fine aggregate. Additionally, both PET and steel fibers are utilized at a volume rate of 0.25%.The outcomes indicate that introducing rubber declines rheological and hardened properties, whereas incorporating hybrid fibers enhances hardened properties such as compressive strength, impact energy, and flexural toughness. The best increase impact energy was obtained at roughly 166.6% when 0.25% hybrid fibers and 10% rubber were used. 74.21 was the greatest increase in flexural toughness when 0.25% hybrid fibers (SCCH3) were used. As for the compressive strength, it was the highest by about 11%.
To preserve the natural materials, applying the principles of sustainable engineering, to approach the principle of zero waste and to contribute the solution of the negative environmental impact of two decades, which is caused by excessive use of bottles of polyethylene terephthalate (PET) in packaging, has led to the approach of alternative, clean and innovative technologies aimed at recycling and reuse to address this environmental problem. Proposed re-use empty bottles as a way to get rid of them and benefit from them at the same time the way, this method through which the empty bottles cutting into fibres using these fibres made of PET to improve the properties of concrete. Percentage of fiber that has been used are 1%, 1.5%, 2%, 3%, 4%, and 5%. Suitable tests were performed to measure properties of concrete reinforcement by recycle PET fibre such as compressive strength, splitting tensile strength, four-point bending strength, modulus of elasticity and toughness index. Flexural toughness tests were performed to measure the ductility capacities of reinforced concrete members with recycled PET fibre reinforced concrete. The results obtained indicate Toughness index was enhanced by using PET fibre reinforced concrete specimens, compared to no ductility performance of concrete specimens without fibre reinforcement. A significant change in ductility was when observed PET used fibre with 3%.
Slurry infiltrated fiber concrete (SIFCON) is a relatively new high performance material and can be considered a special type of fiber concrete (FRC) with high fiber content. The matrix consists of a flowing mortar or cement slurry that must penetrate well through the network of fibers placed in the mold. SIFCON has excellent mechanical properties combined with high ductility and toughness values. SIFCON a relatively new material, is composed of mud (cement or cement and sand), water, a plasticizer (water reducer), and fibers. All previous studies have used waste steel fibers, steel fibers and other fibers, but in this study, plastic fibers were made from polyethylene terephthalate (PET) by cutting carbonated beverage bottles. The main objectives of this study are: Determination the effect of the waste plastic fiber volume ratio on the strength and deformation of (SIFCON) samples under the influence of bending loads. Both flexural strength and toughness properties were determined by testing samples (100×100×400) mm at 28 and 56 days of age. The results obtained from these tests were compared with those performed on conventional tests. Aspect Ratio equal to (36.8) and three volume ratios (3%, 5% and 7%) of the total volume of the concrete mixture were used to add fibers with different volume ratios. A conventional concrete mix was created as a reference for comparison. Bending strength and fresh concrete tests were performed. And compared with the reference mixture and according to the analysis of the results. The results showed an improvement in bending strength .It was found through the flexural examination that the flexural strength of the mixture containing fiber percentage (7%) achieved the highest strength compared to the rest of the ratios used, compared with the reference mixture (Ref.) by (32.25, 27.5)% for ages (28, 56), respectively.
In this paper, the laboratory experiments works were conducted to study the effect of adding recycle waste plastic as polyethene terephthalate PET fibers on the fresh properties as the slump test and hardened properties as a compressive strength, splitting strength, elastic modulus, ultrasonic pulse velocity (UPV), density, absorption, voids, flexural toughness and flexural rupture for the normal concrete. The parameter of this paper included percentage of fibers content (0%, 0.5%, 1%, and 1.5%). The geometric design of the PET fibers was a strip with dimensions 4mm width, 70mm length, and 0.035mm thickness. The aspect ratio of the PET fibers in this work was about 50. The results showed that the PET fibers improving the most properties of the normal concrete and on the other hand there is negative effect on some properties of concrete. There is a significant increase in flexural toughness, about 21.2%, while the compressive strength and splitting were increased by 5% and 18.8%, respectively. Besides this improving, using PET fibers conform to the principle of sustainability, which is reducing the pollution and the cost of waste plastic disposal. It’s observed that properties of concrete as a static modulus of Elasticity and density were decreased with the fiber percentage increased
In this study, the structural behaviour of RC-deep beams of glass fibre-reinforced polymer (GFRP) rubberized concrete is investigated. Rubberized concrete is manufactured by replacing fine sand aggregate with rubber crumbs in volumetric replacement ratios. The main variables were the crumb rubber content (0%, 10%, and 20%) and the main reinforcement ratio. Tested Six samples of deep beams with different dimensions (b = 150, h = 300 mm, L= 1400 mm) were under a four-point load until failure. The parameters under investigation were the mechanical properties of mixtures, load-midspan deflection curves, toughness, and the load-strain relationship. The results indicate that the increased crumb rubber content led to a decrease in the mechanical properties of rubberized concrete mixtures. It was found that the behaviour of all samples of rubberized concrete affected the deflection load curve, the ultimate load, and the increase in deflection. The sample R2-10% Rub showed the highest toughness among the tested samples, with an increase of 301.6% compared to the reference.
The aim of this study is to develop Lightweight self-compacting concrete (LWSCC) mixtures using locally sourced waste materials such as Expanded Polystyrene Beads (EPS) and Waste Plastic Fibers (WPFs) which are all available abundantly available in Republic of Iraq at little or no cost. The fresh, hardened and mechanical properties of these LWSCC were studied, followed by results analysis. Five different mixes of LWSCC were prepared in term of WPF content (0.25, 0.5, 0.75, 1.0, and 1.25 %), in addition to the control mix (R mix) and lightweight concrete (E mix) made of EPS content as a replacement of coarse aggregate. The study showed that the LWSCC produced with these waste materials were decreased the density (lightweight) of the concrete mixes as EPS tend to form more clumps, absorb water and make the mix dry. Therefore, concrete mixtures were adjusted accordingly to be able to offset the workability caused by the addition of EPS. The increase in WPF content decreased the workability due to clumping that occurred in the mixing phase. The analysis of mechanical properties of the LWSCFRC specimens revealed that there was not much improvement. While LWSCC with 100% of EPS replacement as coarse aggregates and 1.25% WPFs provides the best flexural toughness performance
The use of textile reinforcement made from non-corrosive materials, such as carbon and glass can reduce the required concrete material; this is known as Textile Reinforced Concrete (TRC). This study deals with plate specimens having dimension of 500×500×40mm tested under impact load at 28 and 90 days age under two conditions of ends, simply supported and fixed. Cement mortar with about 60 MPa, 7cm cube compressive strength at 28 days was designed for casting the plates. Plate specimens were divided into four groups, they consist of reference plates (no reinforcement) and plates reinforced with 3D glass fabric having three different thicknesses 6, 10 and 15mm. The results indicate that using 3D textile glass fabric cause an increase in number of blows, reduce in final stage deflection, an improvement in toughness and energy absorption under impact loads. Using 3D textile glass fiber with 10mm thickness gave higher number of blows for 28 and 90 days as compared with 6 and 15 mm. Plates with slice 6mm 3D textile glass fiber in two way reinforced has significantly enhancement in number of blows, the improvement was about (80 - 125%) and (128.5- 114. 3%) for 28 and 90 days respectively. The specimens showed increase in the energy absorption, besides the number and width of cracks was reduced and only few cracks are propagated up to the edge of the plates.
Adding fibers to the shotcrete concrete mixes is very important to increase the load carrying capacity, toughness, and reducing crack propagations by bridging the cracks. On the other hand, this fiber has an effect on the fresh and hardened properties of shotcrete. In this study, fresh properties evaluated by using slump flow, , and segregation resistance tests. Hardened properties included testing of air voids, dry density, water absorption, ultrasonic pulse velocity (UPV), compressive strength, and flexural strength. This works including two types of fibers in three forms (waste plastic (PET)fibers only, polypropylene fibers (PP) only, and hybrid fiber (PET and PP)), each form added by three percentages (0.35%, 0.7%, and 1%) by volume.The results showed that the addition of 1% of all types of fiber has a negative impact on fresh properties. Especially in shotcrete containing waste plastic fiber. Also, all specimens containing fibers showed a decrease in the ultrasonic pulse velocity (UPV) and an increase in air voids and water absorption compared to the reference specimens. Also, the results clarify that the addition of waste plastic fiber to shotcrete led to a slight decrease in dry density. The highest increasing in compressive strength of shotcrete recorded by about 8.2% with using 0.35% PP fiber and highest decreasing was 20.9% with using 1% waste plastic fiber. the highest increasing in flexural strength was 62 with using 1% PP fibers.
Ferrocement is a type of concrete made of mortar with different wire meshes. It has wide and varied applications in addition to its strength and durability. This research aims to combine ferrocement and sustainability, as over time, the consumption of plastics, especially plastic bottles, has increased and has serious negative effects if buried, burned, or chemically analyzed. Therefore, this research aims to benefit from this plastic waste and introduce it into the construction field by using plastic waste fibers in the concrete mixture instead of cement at a rate of 0.5% and 1% by volume. This research studied the mechanical properties of nine samples of ferrocement beams with dimensions of 1200 × 200 × 150 mm3. A longitudinal hole with a diameter of 50 mm was drilled in different places of the beams and filled with lightweight concrete to facilitate the use of the hole in service passes when drilled, with a study of the initial cracking loads and the resulting deflection in addition to the failure modes and the deflection resulting from the maximum load. The results showed an improvement in load resistance with an improvement in deflection at the maximum load, In addition to an increase in the improvement of Toughness and Stiffness of ferrocement beams.
The most concerning issue confronting the planet these days is the ascent in Carbon dioxide (CO2) levels to record levels. The cement industries are answerable to between 6-8 % of worldwide CO2 emitting. In construction sectors, researchers tried to contribute in decreasing of CO2 in atmosphere produced by industry and using that was released in air. Accelerated CO2 curing is one of the methods used to get benefit from CO2 in the air. In this paper, CO2 concentration in addition to pressure, relative humidity and period of curing all had a significant influence upon the features of Cement – Based Composites. Results showed that using CO2 curing with different and specific properties of fibers (types, quantities, circumstances and lengths) improved the most mechanical properties and enhanced durability such as: strength, stiffness, ductility, toughness, porosity, and absorption.