Iraqi Journal of Civil Engineering
Login
Iraqi Journal of Civil Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
    • Reviewers of IJCE
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Journal Funding Sources
    • AI Usage and Disclosure Policy
    • Announcements
    • Contact

Search Results for upv

Article
Ultrasonic Pulse Velocity – Strength Relationship for Concrete Subjected to Sulfate Attack

Feras L. Khlef

Pages: 1-14

PDF Full Text
Abstract

The purpose of this paper is to investigate the relationship between the Ultrasonic Pulse Velocity (UPV) and the compressive strength and the flexural strength of hardened concrete when subjected to different concentrations of sulfate attacks. The specimens used in the studies were made of concrete with different water-cement ratios (w/c). The UPV measurement and compressive and flexural strengths tests were carried out for concrete specimens of ages (4-40) days. The experimental results show that the relationship between UPV and the compressive and the flexural strengths of concrete is significantly influenced by age and the concentration of sulfate attack. The UPV and the compressive strength of concrete grow with age, but the growth rate varies with w/c ratio. It is found that with the same concentration of sulfate attack, a clear relationship curve can be drawn to describe the UPV and compressive and flexural strengths of hardened concrete. This paper presents the UPV-strength relationship curves for concrete having different (w/c) ratios subjected to different concentrations of sulfate attack. These curves are thought to be suitable for prediction of hardened concrete strength with a measured UPV value when sulfate attack is considered. It is concluded that the UPV increases with the increase of the compressive and flexural strength. The observed range for UPV was (3.5 to 4.75 km/sec) corresponds to (24 to 28.5 N/mm2) for compressive strength and to (4.6 to 6.5 N/mm2) for flexural strength. The UPV decreases with the increase of the concentration of sulfate exposure. The obtained maximum reduction in UPV was 31.6% with respect to the control spacemen at age of 40 days.

Article
Assessment of concrete compressive strength by ultrasonic pulse velocity test

Mohammed Hmood Mohana .

Pages: 39-46

PDF Full Text
Abstract

One of the most popular non- destructive techniques is ultrasonic pulse velocity (UPV) which used in assessment of concrete properties. A statistical experimental program was carried out in the present study to establish an accurate relation between the UPV and the concrete compressive strength. The program involved testing of concrete cubes cast with specified test variables. The variables are the age and density of concrete. In this research, all the samples were tested by direct ultrasonic pulse velocity (DUPV) and surface ultrasonic pulse velocity (SUPV) to measure the wave velocity in concrete and the compressive strength for each sample. An experimental study was conducted to compare between the velocities of ultrasonic waves that transmitted along the two paths; direct and indirect. A total of more than 150 cubes having dimensions of 150 mm side were prepared to conduct both non-destructive and the compressive strength (destructive testing). The results from experimental program were used as input data in a statistical program (SPSS) to predict the best equation, which can represent the relation between the UPV (direct, indirect), and compressive strength, a linear equation is proposed for this purpose. The UPV measurement and compressive strength tests were carried out at the concrete age of 7, 28, 56 days. A relationship curves were drawn between DUPV, SUPV, compressive strength and density. The mixes composition in this study consists of ordinary Portland cement, fine sand, gravel, super-plasticizer, and water. All the specimens were under (20) Cº. The statistical analysis revealed that the possibility in evaluating the properties of the concrete by using direct and indirect wave velocities    

Article
Investigation on the effect of Polyethylene Terephthalate (PET) fiber and crumb rubber on energy absorption capacity of concrete

Fatima Mahmoud, Ahmed Noaman

Pages: 13-25

PDF Full Text
Abstract

The accumulation of wastes, especially plastic and car tires, has become a major problem facing society today. Therefore, through this research, these wastes were recycled and used to improve some properties of concrete. Recycled crumb rubber from car tires was used instead of sand as a partial replacement of 10%. The substitution was done by two methods: random and equivalent size substitution. As well, 1%polyethylene terephthalate (PET) fiber was added by the volume of concrete to improve some properties of rubberized concrete. Compressive strength, ultrasonic pulse velocity test (UPV) were conducted in this study to investigate the efficiency of PET rubberized concrete, as well the impact resistance test was also conducted to investigated the ability of PET rubberized concrete in term of energy absorption. Slabs of size (50cm×50cm×5cm) were utilized for low velocity impact test. The results indicated there were a reduction in compressive strength and UPV results were observed in PET fiber rubberized concrete the reduction were (37.47% and 5.4%) respectively as compared with PETC mixture and the result of dynamic modulus of elasticity show the same pattern of UPV result , in contrast there was an improvement in the impact resistance when PET fiber and crumb rubber were used it increased by(117.63% and 52.9% ) for random and equivalent replacement respectively as compared with PETC.

Article
Investigate the Fresh and Hardened Properties of Shotcrete Concrete Contains Different Types of Plastic Fibers

Abdulfatah Jawhar, Abdulkader Al-Hadithi, Yousif Mansoor

Pages: 90-100

PDF Full Text
Abstract

Adding fibers to the shotcrete concrete mixes is very important to increase the load carrying capacity, toughness, and reducing crack propagations by bridging the cracks. On the other hand, this fiber has an effect on the fresh and hardened properties of shotcrete. In this study, fresh properties evaluated by using slump flow, , and segregation resistance tests. Hardened properties included testing of air voids, dry density, water absorption, ultrasonic pulse velocity (UPV), compressive strength, and flexural strength. This works including two types of fibers in three forms (waste plastic (PET)fibers only, polypropylene fibers (PP) only, and hybrid fiber (PET and PP)), each form added by three percentages (0.35%, 0.7%, and 1%) by volume.The results showed that the addition of 1% of all types of fiber has a negative impact on fresh properties. Especially in shotcrete containing waste plastic fiber. Also, all specimens containing fibers showed a decrease in the ultrasonic pulse velocity (UPV) and an increase in air voids and water absorption compared to the reference specimens. Also, the results clarify that the addition of waste plastic fiber to shotcrete led to a slight decrease in dry density. The highest increasing in compressive strength of shotcrete recorded by about 8.2% with using 0.35% PP fiber and highest decreasing was 20.9% with using 1% waste plastic fiber. the highest increasing in flexural strength was 62 with using 1% PP fibers.

Article
الکشف عن عیوب الخرسانة باستخدام سرعة الموجات فوق الصوتیة

nan nan

Pages: 1-13

PDF Full Text
Abstract

This research investigates the efficiency of Ultrasonic Pulse Velocity (UPV) method in detecting voids and depth of cracks in concrete. Tests were performed to compare the accuracy between the direct and indirect method of Ultrasonic Pulse Velocity method (UPV) in detecting the location of defects. Three concrete prisms with fabricated void at a known location were used and tested at 28 day. Two other prisms were casted and tested to detect of crack depth in concrete, cracks at depth of 5 and 10 cm perpendicular to axis of beam were induced without actually breaking the beam. Test results indicate that direct and indirect methods can be used to assess the in-situ properties of concrete or for quality control on site, and the first and second method of determining the crack depth gave results with high accuracy while the results of third method were lower than the actual crack depth and for the forth method were higher than it. Therefor, we can use the average of the third and forth results to obtain the crack depth with good accuracy.

Article
Study on Flexural Behaviour and Cracking of Ferrocement Slabs by Neglecting Very Fine Sand

Mohammed Nawar

Pages: 11-22

PDF Full Text
Abstract

This paper presents the experimental results of eight slabs made of Ferrocement. All specimens were )700mm (long, )300mm (wide and )50mm (thick. These specimens were divided into two groups (The first group has four specimens coursed of normal sand gradient and in the other four specimens, the sand that passing from sieve No. 8 was neglected), to investigate behavior of slabs under bending effect and studying the cracks that generated after bending then, comparing the results between these two groups. A thin square welded wire mesh was used as reinforcement. The number of wire mesh layers was varied between 0 to 3 layers. Ultrasonic Pulse Velocity (UPV) Test was used to detect the cracks. The results showed that there was a slight rise in bending for first group slabs compared with second group slabs. Maximum bending strength was achieved for both slab groups with 3 layers of wire mesh. it was shown that there was a significant convergence in the load values required to cause appearing of the first crack and final failure for the two groups. The percentage of ultimate load between slab reinforced with 3 layers and without reinforcement was (25.27%) for the first group, while the increase in ultimate load for a specimen that reinforced with 3 layers was (24.16%) compared to specimen without reinforcement for the same group. On the other hand, the results showed an improvement in the performance of the second group slabs due to its resistance to appearing of cracks resulted from bending. The percentage of increasing cracks after bending for the unreinforced specimen in group 1 was (9%) compared with the unreinforced slab in group 2. Whereas the numbers of cracks number in slab reinforced with 1 and 2 layers in the second group were less than slabs with 1 and 2 layers in the first group about (8.86 %) and (7.77%), respectively. While this percentage for a specimen with 3 layers in group 2 was about (8.62%) less compared to the specimen with 3 layers in group 1..

Article
The Effect of Using Lightweight Aggregate on Some Properties of Cement Mortar

Ziyad Majeed Abed

Pages: 1-9

PDF Full Text
Abstract

The aim of this research is to produce lightweight cement mortar with properties better than reference ordinary cement mortar. Porcelanite stone were utilized as lightweight aggregate with a volumetric partial substitution of fine aggregate. The process includes using different percentages (5, 10, 15 and 20 %) of pre-wetted (24hr.) porcelanite to produce lightweight mortar with internal curing. Water curing was used for reference mortar mixture and air curing for the other mixtures of porcelanite substitution. Compressive strength, flexural strength, density and ultrasonic pulse velocity for different ages (7, 14 and 28 days) have been tested. The results show an improvement in the properties of cement mortar especially in replacement percentage of 10 %.

Article
Effects of Waste Plastic PET Fibers on The Fresh and Hardened of Normal Concrete

Ali H. Allawi ., Abdulkader I. AL-Hadithi ., Akram S. Mohmoud .

Pages: 47-58

PDF Full Text
Abstract

In this paper, the laboratory experiments works were conducted to study the effect of adding recycle waste plastic as polyethene terephthalate PET fibers on the fresh properties as the slump test and hardened properties as a compressive strength, splitting strength, elastic modulus, ultrasonic pulse velocity (UPV), density, absorption, voids, flexural toughness and flexural rupture for the normal concrete. The parameter of this paper included percentage of fibers content (0%, 0.5%, 1%, and 1.5%). The geometric design of the PET fibers was a strip with dimensions 4mm width, 70mm length, and 0.035mm thickness. The aspect ratio of the PET fibers in this work was about 50. The results showed that the PET fibers improving the most properties of the normal concrete and on the other hand there is negative effect on some properties of concrete. There is a significant increase in flexural toughness, about 21.2%, while the compressive strength and splitting were increased by 5% and 18.8%, respectively. Besides this improving, using PET fibers conform to the principle of sustainability, which is reducing the pollution and the cost of waste plastic disposal. It’s observed that properties of concrete as a static modulus of Elasticity and density were decreased with the fiber percentage increased    

Article
دراسة بعض خواص الخرسانة الرغویة باعتماد سرعة الموجات فوق الصوتیة

nan nan

Pages: 16-34

PDF Full Text
Abstract

Concrete is by far the most widely used construction material now today. Foamed concrete is light building material with good strength as well as low thermal conductivity and easy workability; it is produced by either Mix Foam Method or Preformed Foam Method. Ultrasonic Pulse Velocity(UPV) is a non destructive technique involve measuring the speed of sound through concrete in order to predict concrete strength and to detect the presence of cracking, voids, decay and other damages. This research includes three main experimental stages:- The first stage includes the production of foamed concrete and it was divided into two parts, the first part, mixing design(determination the proportions of the raw materials) was presented in the second part, the mixing procedure has been illustrated. The second stage includes preparation of samples,(i.e. molding, finishing surface, removal from molds, and curing). The third stage includes several teste to estimate properties the final product and factors influencing them, these properties include density, compressive strength, and the ultrasonic pulse velocity. From the experimental work and at the same test's age, the compressive strength and the ultrasonic pulse velocity for foamed concrete with 800 kg/m3 density were respectively (2.38 MPa,1.56 km/s)and the compressive strength and the ultrasonic pulse velocity for foamed concrete with 1200 kg/m3 density were respectively (3.7 MPa,1.96 km/s) while it were (7.8 MPa and 2.12 km/s) for foamed concrete with 1600 kg/m3 density

Article
Strength and Stiffness of a Geopolymer-treated Clayey Soil for Unpaved Roads

Huda S. Abdulwahed ., Khalid. R. Mahmood ., Ahmed H. AbdulKareem .

Pages: 1-9

PDF Full Text
Abstract

This study is conducted to investigate the strength and stiffness of clayey soil stabilized with fly ash-based geopolymer for unpaved roads. Two sodium hydroxide concentrations of 6 and 8M and two alkali solution ratios of NaOH:Na2SiO3= 1 and 1.5 were considered. Other factors such as fly ash replacement ratio (by mass), curing period, and curing temperature were held constant at 15%, 48 hours, and 65 C, respectively. The unconfined compressive strength (UCS) and ultrasonic pulse velocity (UPV) tests were performed to evaluate the mixtures. Outcomes of this study revealed that the strength of the clayey soil could be increased by up to 94%. Additionally, increasing sodium silicate content in the alkali solution increased the solution's activity and yielded higher strength and stiffness. This study confirms the effectiveness of the geopolymer binder for the improvement of soil strength and stiffness.    

1 - 10 of 10 items

Search Parameters

Journal Logo
Iraqi Journal of Civil Engineering

University of Anbar

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

       
Copyright © 2025 College of Engineering, University of Anbar. All rights reserved, including those for text and data mining, AI training, and similar technologies.